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Abstract

We study two-player impartial games whose outcomes emulate two-state one-
dimensional cellular automata, such as Wolfram’s rules 60 and 110. Given
an initial string consisting of a central data pattern and periodic left and
right patterns, the rule 110 cellular automaton was recently proved Turing-
complete by Matthew Cook. Hence, many questions regarding its behavior
are algorithmically undecidable. We show that similar questions are unde-
cidable for our rule 110 games. Keywords: cellular automaton, impartial
game, rule 110, take-away game, undecidability.

1. Introduction

We study inter-connections between two popular areas of mathemat-
ics, two-player combinatorial games [BCG04] and cellular automata (CA)
[N66, HU79, W84a, W84b, W84c, W86, W02]. We present an infinite class
of games and prove that their outcomes (or winning strategies) emulate cor-
responding one-dimensional CA. In particular we study some recent results
of Matthew Cook concerning algorithmic undecidability of Stephen Wol-
fram’s well known elementary cellular automaton, rule 110, and interpret
these results in the setting of our games. The universality of the rule 110
automaton was conjectured by S. Wolfram in 1985 and proved by M. Cook
in [C98, C04, C08]. It is also discussed in the remarkable book [W02].

Our games are played between two players on a finite number of positions
and are purely combinatorial ; there is no element of chance and no hidden
information. A rule-set gives the legal moves of a game. In normal play,
the ending condition is given by, a player who is not able to move loses and

Preprint submitted to Elsevier February 26, 2013



the other player wins. In misère play, the winning condition is reversed, a
player who is not able to move wins. If the set of options does not depend on
whose turn it is, then the game is impartial, otherwise the game is partizan.
It turns out that the game we study can naturally be interpreted either as
normal or misère impartial play. Here we have chosen normal play. The
outcome classes of these games are denoted P (previous player win) and N
(next player win). That is, a position (game) is P if and only if the player
whose turn it is to move loses, assuming best play by both players. This
gives a recursive characterization of the outcomes of all starting positions of
a game and—unless there are drawn positions such as infinite loops where
no player can force a win—there will be a partitioning of the set of game
positions into N and P.

In this paper, we study two different classes of games with (as we will
see) equivalent outcomes. One class is similar to the take-away games found
in [G66, S70, Z96, L12]. In such games the players take turns in removing
tokens (coins, matches, stones) from a finite number of heaps, each with a
given finite number of tokens. For certain games the pattern of the two sets
of outcomes are reasonably easy to understand. For example it is known
that the set of P-positions of a one heap subtraction game, e.g. [BCG04],
with a finite number of moves—such as a heap of a finite number of tokens
and the rule-set, remove one, two or five tokens—is eventually periodic. On
the other hand, in [LW] simple rule-sets are studied that give rise to very
complex patterns of P-positions. The classical one heap subtraction games
are generalized to several heaps and, by emulating binary one-dimensional
cellular automata with finite update functions, it is shown that for finite
rule-sets it is undecidable whether or not two games have the same sets of
P-positions. It appears that links between CA and two-player combinatorial
games are uncommon in the literature. The only sources, except [LW], that
we have found so far are [F02, F12]. See also [DH, DH09] for undecidability
results of some multiplayer games and for interesting surveys on algorithms,
complexity and combinatorial games.

The cellular automata use simple rules for updating some discrete struc-
ture in discrete (time) steps. For the one-dimensional case we take a doubly
infinite binary string as input. As mentioned in the previous paragraph, if
we fix some simple initial string (such as a single “1” among “0”s), many
problems regarding the behavior of the CA are algorithmically undecidable
for finite update functions; e.g. [W02]. In [C04, C08], a particularly sim-
ple instance of an update function is studied, Wolfram’s rule 110, with the
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following update function. The value of any given cell remains a “0” if the
neighboring cell to the left is also a “0”. It remains a “1” if at least one of
the two nearest neighbors contains a “0”. Otherwise the value switches. If
the initial string is arbitrary (or in a sense too simple or too complicated
[N66]), for a fixed update function, questions of decidability do not appear
interesting. It turns out that a natural setting for the rule 110 CA is to code
the program in a central finite part of the initial string together with certain
periodic left and right patterns. Under these assumptions it is shown, in
[C04, C08], that many questions regarding the rule 110 CA are undecidable.
In fact, universal Turing machines with the least known number of states and
symbols were constructed by simulating the rule 110 automaton. In contrast
the simpler Wolfram’s rules 60, defined in Section 2, and 90 are known to be
decidable under the above assumptions.

Since the one-dimensional cellular automata generate two-dimensional
patterns over ‘time’, a reasonable goal would be to try and emulate the CA,
by games, in no more than two dimensions. We will see that this can be done,
in the triangle-placing game, by two players alternately placing isosceles right
triangles on the upper half plane according to certain rules. In the setting of
take-away games we will see that indeed our games will be played on two finite
heaps, a time-heap and a tape-heap, a terminology introduced in [LW] (but
where several heaps were used in the simulation of cellular automata). Our
variation of take-away games belongs to a different family than the classical
subtraction games, namely the number of tokens a player is allowed to remove
depends in some way on the previous player’s move; so that in fact our game
positions will be represented by ordered triples of non-negative integers. Such
games are sometimes called move-size dynamic e.g. [L09] and in fact, we will
adapt an idea from that paper: the move options on one of the heaps will
depend on the other player’s move on the other heap (although the context
is quite different here).

In Section 2, as an introductory example, we begin by studying a take-
away game that emulates Wolfram’s rule 60 CA and in a particularly simple
setting, namely where the outcomes form Pascal’s triangle modulo 2. In
Section 3, we define triangle-placing games that emulate an infinite class of
CA. Then, in Section 4, we generalize the setting in Section 2 and define a
class of take-away games with equivalent outcomes as the triangle-placing
games. In Section 5, we discuss how some undecidability problems for the
rule 110 cellular automaton are interpreted in our setting of combinatorial
games.
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2. The rule 60 game and Pascal’s triangle

A position (X, Y,mp) of the rule 60 game consists of a finite heap ofX ≥ 0
tokens and a finite heap of Y ≥ 0 matches. The matches simulate ‘time’.
There are 2 players who alternate removal of tokens and matches according
to the following rules. A move consists of two parts: (1) at least one match
is removed, at most the whole heap; (2) at most mp tokens are removed
(possibly none), where mp > 0 denotes the number of matches removed by
the other player in the previous move. A player may not remove the whole
heap of matches, unless all tokens are also removed. A player who is unable
to move loses. The other player wins. See Figures 1 and 2.

Figure 1: The previous player removed the rightmost match. Hence at most one token
may be removed, which means that no move is possible and hence the previous player
wins.

Figure 2: In this game, the next player wins by removing the last match together with
both tokens.

The update rule of Wolfram’s rule 60 cellular automaton is as follows.
Assign arbitrary binary digits to a0

x for all integers x. For y > 0, let ayx = 0
if ay−1

x−1 = ay−1
x and otherwise let ayx = 1. In other words ayx = f(ay−1

x−1, a
y−1
x ),

where f(i, j) = i⊕ j, the operation being binary addition without carry, the
Xor gate. The two-dimensional patterns obtained by this cellular automaton
are algorithmically decidable given that the initial one-dimensional pattern
is sufficiently simple, say left and right periodic together with a central data
program. In particular, if a spatial pattern consists in a single “1”, say
a1
i = 1 if and only if i = 1, then the updates correspond precisely to Pascal’s

triangle modulo 2. In fact, the outcomes of the rule 60 game correspond to
the updates of the rule 60 CA with an initial string of the form . . . 000111 . . .,
see Figure 3. Our first result is a special case of Theorem 4.1 in Section 4.
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Theorem 2.1. Let the initial condition of the rule 60 CA be a0
i = 1 if

and only if i > 0. Then, a position (X, Y,mp), in the rule 60 game, with
X ≥ 0 tokens, Y ≥ 0 matches and where the previous player removed mp > 0

matches is a second player win if and only if aYX = · · · = a
Y+mp−1
X = 0 and if

Y > 0 then aY−1
X = 1.

1 10 20
0
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20

Tape

T
i

m
e

Figure 3: The CA given by f(x, y) = x ⊕ y (Wolfram’s rule 60) together with an initial
string of the form . . . 0011 . . . , the “1”s correspond to dark (red) cells and the initial “0”s
are omitted. (Note that time flows upwards.) By Theorem 2.1, for example the dark
(blue) “circle+tail”s, corresponding to positions (4, 5, 3), (8, 9, 7), (16, 17, 15), . . ., are all P
(the latter extends above the figure), whereas the small light (green) positions (11, 11,mp)
and (12, 14,mp) are N, for all mp. See also Table 1.

X 2 2 2 3 3 3 3 4 4 4 4 4 4 5 5 5 5
Y 1 3 5 1 1 5 5 1 1 1 5 5 5 1 1 1 1
mp 1 1 1 1 2 1 2 1 2 3 1 2 3 1 2 3 4

Table 1: A list of all P-positions (X,Y,mp), for X ≤ 5 and Y ≤ 5, of the rule 60 game,
except those of the form (0, Y,mp), which are P if and only if Y = 0. Note that a triple
of the form (X, 0,mp) is a legal game position if and only if X = 0.
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3. An impartial triangle-placing game

We will connect the outcomes of our games to the patterns of cellular
automata. Let us begin by defining the CA of interest; see Figure 4 for
some examples and also Figure 5. Assign an initial string of binary values
A = (ax) = (a0

x) for all integers x. The update rule of the cellular automaton
CA(A,Γ, γ), for γ and Γ non-negative integers, is as follows: For y > 0, let
ayx = 0 if

ay−1
x−1 = ay−1

x = 0

or if
ay−1
x−Γ−1 = · · · = ay−1

x+γ = 1

and ayx = 1 otherwise. (Then Γ = γ = 0 correspond to rule 60.)
Our game is played on the upper half plane, which consists of all ordered

pairs of integers (x, y) with y ≥ 0. When we use the term triangle in this
section we think of the set of discrete lattice points that are covered by a
certain triangle shape with horizontal base and in case of an isosceles right
triangle, or IRT, the right angle is to the right. In particular, a triangle
position (x, y, h), h a positive integer, is an IRT in the upper half plane,
which covers the point (x, y + h − 1) at the top and the set {(x − h +
1, y), . . . , (x, y)} at the base; Figure 6. Thus, if h = 1 we have a trivial IRT,
covering a single point. Yet, it will be convenient to think of h as the height
of the triangle position. Also its support has size Γ + h + γ + 1 and covers
{(x−Γ−h, y−1), . . . , (x+γ, y−1)}. Here we only require that the triangle
position is contained in the upper half plane, that is that y ≥ 0, so that it
is legal for a (final) triangle position to have its support at the y-coordinate
−1.

The rules of the triangle-placing game T(A,Γ, γ) are as follows. Let
(A,Γ, γ) be as in CA(A,Γ, γ). Two players alternate in placing IRTs on the
upper half plane. Suppose that the triangle position (x, y, h) is given. Then
the next player places another IRT, say (x′, y′, h′), of the same shape but
possibly different size, with its top intersecting the support of the previous
triangle, that is satisfying x′ ∈ {x − (Γ + h), . . . , x + γ}, with y′ + h′ = y
and 1 ≤ h′ ≤ y; Figure 8. Note that by the rules of game, the actual ‘game
board’ is bounded by a shape as in Figure 6. (See also the first part of the
proof of Theorem 4.1.)

The ending condition is provided by the doubly infinite binary string
A = (ax). A player can place the triangle (x, 0, h) if and only if ax−h+1 +
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Figure 4: The updates of CA(A, 0, 1), CA(A, 2, 1), CA(A, 1, 1) and CA(A, 0, 3), for A =
. . . 0011 . . . and x, y ≤ 400. They all appear to have non-trivial behavior. A more definite
common feature is the reappearance of patterns of white cells (“0”s) in the shape of
isosceles right triangles. As for rule 60 in Figure 3 this is just a simple consequence of
their respective update functions.

· · · + ax = 0. Hence, the ending condition does not depend on Γ and γ. By
the update rule of the CA, another way of stating the ending condition is to
require that if y = 0 then the final IRT covers only “0”s in the underlying
CA-cells. Then, the game ends at the level y > 0, if and only if y = 1 and
there is no legal move to level y = 0; Figures 9 and 10.
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1/(Γ + 1)−1/γ

ai

Figure 5: The time-wise influence of the initial CA value ai is bounded below by lines of
slopes −1/γ and 1/(Γ + 1) respectively.

−h/γh/(h+ Γ)

(x, y + h− 1)

(x, y)

Figure 6: The triangle position (x, y, h) is covered by an isosceles right triangle (in white)
with (x, y) at the right angle and (x, y + h − 1) at the top. Its support in dark blue is
{(x− h− Γ, y − 1), . . . , (x+ γ, y − 1)}. The slopes of the sides connecting the support to
the top are h/(h+ Γ) and −h/γ respectively.

−1/γ1/(Γ + 1)

(x, y + h− 1)

Figure 7: The outcome of a triangle position (x, y, h) is influenced by the CA-cells bounded
above by lines of slopes 1/(Γ + 1) and −1/γ respectively.
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Figure 8: Three typical moves in the triangle placing game. The dashed IRTs indicate the
previous triangle positions for the respective games. In each case, by the rules of game,
the top of the current triangle position intersects the support of the previous one.

y = 0

Figure 9: Two final triangle positions; to the left, the triangle position’s support does not
belong to the upper half plane, so no move is possible; to the right, there are no white
CA-cells, at the terminal level y = 0, within the support of the triangle position.

y = 0

Figure 10: These triangle positions are non-terminal and losing since the next player can
place a final IRT of height 1, within the support of the current triangle position, at the
terminal level y = 0.
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Theorem 3.1. Given T(A,Γ, γ), the triangle position (x, y, h) is P if and
only if it covers only “0”s and, if y > 0, its support covers only “1”s in the
update of CA(A,Γ, γ), or equivalently ayx−h+1 + · · · + ayx = 0 and ay−1

x−(Γ+h) +

· · ·+ ay−1
x+γ = Γ + h+ γ + 1.

Proof. We need to show that, if a triangle position covers only “0”s, then
none of its options does (denoted by “P→ N”) and that if a triangle position
covers at least one “1”, at least one of its options covers only “0”s (denoted
by “N→ P”).

For the “P → N” direction, if y = 0 we are done so suppose that y > 0.
If the triangle (x, y, h) covers only “0”s and its support covers only “1”s, then
by the update of the CA, the next IRT covers one of these “1”s.

For the “N → P” direction, suppose that the triangle position (x, y, h)
covers a “1”, say in cell (r, s). Then at least one of the two CA-cells (r, s−1)
or (r − 1, s − 1) must contain a “1”. Hence, we can iterate this process of
detecting “1”s covered by the triangle position until we approach its base.
Since this base covers a “1”, by the ending condition this gives y > 0, and
hence, by the update rules of the CA, the support of the triangle position
(x, y, h) must cover a “0”. By the rules of triangle-placing, the next player
can use the “0”-cell, at y-coordinate y − 1, as the top of the next IRT and,
by the update rules of the CA, choose it carefully as to only cover “0”s and
simultaneously guarantee only “1”s underneath its support if its y-coordinate
is positive. �

In this proof the intention has been to convey the main idea of how
our games emulate the desired cellular automata. For an analogous proof,
covering some more detail, see the second part of the proof of Theorem 4.1.

4. Take-away games and cellular automata

Let us next define a generalization of the take-away game of rule 60
from Section 2, where, as in the previous section, the move options depend
on two non-negative integer parameters, Γ and γ, and where the ending is
conditioned on a black or white coloring of each token. Let τ = τ1 . . . τX
denote a finite binary string. Then the ith token is black if and only if
τi = 1, the first token is at the bottom of the heap and the Xth token is at
the top. It may be convenient to think of ‘non-positive tokens’ as white, but
we will make our definitions independent of this.
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Hence a game position (X, Y,mp) = (τ,X, Y,mp) consists of a finite
tape-heap of X ordered and τ -colored tokens and a finite time-heap of Y
(unordered) matches, where X and Y are non-negative integers and where
mp > 0 denotes the number of matches removed by the other player in the
previous move. Since our take-away games are move-size dynamic, the move
options for the next player will depend in some precise manner on the previ-
ous player’s move.

Suppose that a position (τ,X, Y,mp) is given together with the game
parameters Γ and γ. The two players alternate turns in which they, at each
stage of the game, remove 0 ≤ t ≤ X tokens from the top of the tape-heap
and 1 ≤ m ≤ Y matches from the time-heap according to the following rules.

(I) The number t of tokens removed from the tape-heap must satisfy 0 ≤
γ(m− 1) ≤ t ≤ γm+mp + Γ, with the exception that if the number of
remaining tokens is less than γ(m−1) then all of them can be removed.

(II) By m ≥ 1, at least one match has to be removed. The whole heap of
Y matches can be removed if and only if there is no black token among
the top min{X, Y } tokens.

Hence, if there are no matches left, a player cannot move and the other
player wins. But the game can also end because it is not possible to remove
a final single match as described in (II).

Since we are interested in emulating one-dimensional cellular automata
and the triangle-placing game in the previous section, we wish to have a
mechanism to simulate a doubly infinite binary string from our finite tape-
heap. For this purpose we make the following somewhat technical definition.
(The move rules in any specific game are given in (I) and (II) and do not
depend on this paragraph.) Given game constants Γ, γ and a doubly infinite
binary string A, we denote a game family by G(A,Γ, γ) and a specific game by

G(A,Γ, γ)
(X,Y,mp)
ξ , where ξ together with the string A, determine the specific

coloring of the game. Precisely, the X tokens are colored by the finite binary
string aξ+1 . . . aξ+X ⊂ A via the rule: aξ+i = 1 iff the ith token is black, that
is τi = aξ+i, for all i. The bottom token is colored according to the value of
aξ+1 = τ1 and the top token according to aξ+X = τX .

If A = 0 then the first player wins (independently of the other variables),
where the underscore denotes a periodic given pattern (infinite or doubly
infinite). As we have seen in Section 2, if A = 0 1, precisely ax = 1 if and
only if x ≥ 1, ξ = 0 and Γ = γ = 0, the CA describes the outcomes of the rule
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60 game. In the next section we study the rule 110 game which corresponds
to Γ = 0 and γ = 1. See also Figure 11 for an illustrative example of this
game. Its outcome is illustrated in Figure 12 and Table 2, which leads us to
the main result of this section.

Figure 11: Here we exemplify the rule 110 game via the position (110100, 6, 2, 3). Note
that, since γ = 1, the first player cannot win by removing both matches. Namely, they
have to be accompanied by at least one and at most five tokens. But, by the coloring of
the tape-heap, such moves are not legal. Another possibility for a next player win would
be to remove one match and 0 ≤ t ≤ mp = 3 tokens. But, by the coloring of the tape-heap,
this gives the second player the opportunity to remove the single match and either zero
or one token and win. Hence, the position is a second player win, which also follows by
Theorem 4.1 and Figure 12.

Given a take-away game, G(A,Γ, γ)
(X,Y,mp)
0 , it will be convenient to think

of the number of tokens as a linear translation from the (x, y)-coordinates of
the corresponding CA(A,Γ, γ), X = ϕ(x, y) = x+ γy.

Theorem 4.1. Let A = (ai) denote an initial condition of the cellular au-

tomaton CA(A,Γ, γ) and let the game be G(A,Γ, γ)
(X,Y,mp)
0 . If, in addition,

X ≥ (Γ + γ + 1)Y +mp, then the following conditions are equivalent.

(i) The updates of the CA satisfy ayx = · · · = a
y+mp−1
x = 0 and if y > 0

then ay−1
x = 1.

(ii) The game position (X, Y,mp) = (ϕ(x, y), y,mp) is P, a previous player
win.

The same result holds in full generality with the initial condition of the CA
exchanged for A = . . . 00a1a2 . . .. In particular this result holds whenever
−γy ≤ x < (Γ + 1)y +mp.

Proof. We begin by proving that if

X ≥ (Γ + γ + 1)Y +mp, (4.1)

12



then the game will end with sufficient number of tokens in the tape-heap,
so that the coloring of the tokens determines the ending condition. In this
way we can guarantee that the outcomes are independent of the non-positive
part of the CA’s initial condition; see also Figures 5 and 7. Suppose that
the position is (X, Y,mp) and that (ti)

n
i=1 and (mi)

n
i=1 represent the complete

sequences of removal of tokens and matches respectively until the end of
the game, with n ≤ Y the number of entries in the sequences and where n
indicates the last move. Then, by definition, the total number of removed
tokens satisfies

n∑
i=1

ti ≤ γ
n∑
i=1

mi +mp +
n−1∑
i=1

mi + nΓ, (4.2)

where
∑n

i=1mi ∈ {Y −1, Y }, by the ending condition of the game. It follows
that the right hand side of the inequality is maximized for mn = 1 and n = Y .
For this “worst” case, in each move, except the first one, γ + Γ + 1 tokens
are removed. In the first move, γ + Γ + mp tokens are removed. Hence, if
X > γY +mp+Y −1+Y Γ, then the coloring of the tape-heap will determine
the outcome of the game, which proves the claim.

For the rest of the proof we can ignore the finiteness of the heap of
tokens and assume the appropriate initial condition of the CA. Hence, as
indicated above, we can identify the outcome of our heap game with that of
the triangle-placing game, by setting mp = h, (X, Y ) = (ϕ(x, y), y). Namely.
the result follows since (i) is equivalent to the triangle position covering only
“0”s and its support covering only “1”s. However, we have promised to give
a somewhat more detailed variant of the proof in this setting.

In analogy with the setting of the triangle-placing game, we need to show
that, if a position as in (ii) satisfies (i), then none of its options does (denoted
by “P→ N”) and that if a position as in (ii) does not satisfy (i) then one of
its options does (“N→ P”). Let us begin with the former case.

“P→N”: Suppose first that (ϕ(x, y), y,mp) is of the form in (i). Then we
need to show that none of its options is of this form. We may assume that
y > 0 since otherwise there is no option. Let 1 ≤ m ≤ y. An option is of the
form

(ϕ(x′, y′), y′,m) = (ϕ(x, y)− t, y −m,m) (4.3)
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where 0 ≤ γ(m− 1) ≤ t ≤ γm+mp + Γ, which gives t = x−x′+ γ(y− y′) =
x− x′ + γm and so γ(m− 1) ≤ x− x′ + γm ≤ γm+mp + Γ which implies

x−mp − Γ ≤ x′ ≤ γ + x. (4.4)

By the assumption we have that ay−1
x = 1. Also, item (i) together with the

updates of the CA give ayx−i = 0 for 0 ≤ i ≤ mp − 1. Altogether this gives
that

ay
′+m−1
x′ = 1 (4.5)

for all x−mp − Γ ≤ x′ ≤ γ + x, which by (4.4) proves the claim.
“N → P”: For this case we have to show that it is possible to find an

option of the form in (i) whenever one is playing from a position not of this
form. Suppose first that ay−1

x = 0. Then there is a least i ≥ 1 such that
ay−ix = 0 and (ay−i−1

x = 1 or y = i). Remove i = m matches and γm tokens,
all tokens if x < γm. Then the new position is of the correct form (since we
assume that ax−γm = 0 if x < γm).

Otherwise we may assume that ay+i
x = 1 for some least 0 ≤ i ≤ mp − 1.

By the updates of the CA (and minimality) this gives that the cell

ayx−i = 1, (4.6)

but ayx−i+j = 0, for all 1 ≤ j ≤ i. We may assume that ay−1
x = 1, which

then, by the update rules of the CA, implies ay−1
x−j = 1, for all 0 ≤ j ≤ i+ Γ.

Therefore, by (4.6), the update rules of the CA force ay−1
x−i−Γ−1 = 0. Hence

it suffices to remove tokens so that x′ = x− i− Γ− 1 is the x-coordinate of
the CA-cell corresponding to the new position; that is γm+ i+ Γ + 1 tokens,
where m is the number of removed matches. By the game rules (I), we need
to check that −γ ≤ i+ Γ + 1 ≤ mp + Γ. By definition of i, the lower bound
is clear since i ≥ 0 and the upper bound, since i+ 1 ≤ mp. �

In Theorem 4.1, for convenience, we have implicitly set ξ = 0, but one
can easily deduce that it holds for all ξ since the string A can be translated
arbitrarily preserving the same time-wise CA patterns (but at different spa-
tial locations). The following corollary of Theorem 4.1 supplies information
about this and about the N-positions of our games.
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1 5 10
0

5

Figure 12: The pattern represents a few initial CA updates for rule 110 for the initial
bit string, τ =“11010011101100” (and an infinite string of 0s to the left). The updates
also indicates winning strategies for the corresponding rule 110 game’s heap positions (mp

dashed) for the ending condition τ . For example, the large dark (blue) circle represents
(110100, 6, 2,mp). It is a second player win if and only if 1 ≤ mp ≤ 3. For the smaller
light (green) circles the first player wins independent of mp. For example, for the leftmost
green position it is always possible to remove precisely the final match and the final token.
The cells in the gray area do not affect the outcomes of the given positions.

x 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 6 6 6
y 2 5 7 0 2 2 2 2 2 6 0 6 6 0 0 3 6 6 6
X 4 7 9 3 5 5 6 6 6 10 5 11 11 6 6 9 12 12 12
Y 2 5 7 0 2 2 2 2 2 6 0 6 6 0 0 3 6 6 6

h,mp 1 1 1 1 1 2 1 2 3 1 1 1 2 1 2 1 1 2 3

Table 2: This is a list of some P-positions of our rule 110 games (that is Γ = 0 and
γ = 1). The triangle-placing game’s P-positions are denoted (x, y, h), whereas the
take-away game’s P-positions are (X,Y,mp). The initial string of the rule 110 CA is
“11010011101100” as in Figure 12. We show all P-positions for 0 < x ≤ 6 and 0 ≤ y ≤ 6.
(Positions of the form (0, Y,mp) are P if and only if Y = 0.) See also Corollary 4.3.

Corollary 4.2. A position (ϕ(x, y), y,mp), of the game in Theorem 4.1, is
N if and only if the corresponding CA updates satisfy one of the following:

(a) ay+i
x = 1 for some i ∈ {0, . . . ,mp − 1} or

(b) ay−1
x = 0.

Shift the indices in A by ξ steps so that, in particular the content of the
new 0-cell becomes that of the old ξ-cell, that is define a′x−ξ = ax for all
x. Then Theorem 4.1 and the first paragraph of this corollary hold with A
exchanged for (a′i) and each x exchanged for x− ξ.
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If the condition X ≥ (Γ+γ+1)Y +mp, in Theorem 4.1, is satisfied, where
the number of tokens in the tape-heap is X and the number of matches in
the time-heap is Y , then we say that the tape-heap is super-critical. See also
Figure 6. The point of making this definition is that many results translate
immediately between the CA and the take-away game for super-critical tape-
heaps.

Let us formally state the correspondence of the outcomes of our two
families of games.

Corollary 4.3. Let the game parameters Γ and γ be given. Suppose further
that x, y, h,X, Y,mp are integers with Y = y ≥ 0, mp = h > 0 and where the
tape-heap with ϕ(x, y) = X ≥ 0 tokens is super-critical. Then, the position
(x, y, h) in the triangle-placing game is P if and only if (X, Y,mp) is P in the
take-away game.

Two consequences of the above results are the following ‘periodicity lemma’
and the subsequent ‘convergence lemma’.

Lemma 4.4. Let A = (ai) denote a doubly infinite binary string. Then the
following conditions are equivalent.

• The CA(A,Γ, γ) has two-dimensional eventually periodic updates, that
is, there is a finite number of classes of intersections with rational poly-
hedra (one of them bounded) such that, for each class there is a uni-
versal pair of constants (δ, ρ), such that, for all x and y in this class,
ayx = ay+ρ

x+δ.

• The games in T(A,Γ, γ) and the super-critical games in G(A,Γ, γ) have
two-dimensional eventually periodic outcomes: that is, there is a finite
number of classes of intersections with rational polyhedra, with associ-
ated pairs of universal constants (ρ′, δ′) such that, for each class, for
all ξ, for all X, Y and mp, the outcomes of the positions (X, Y,mp) and
(X + δ′, Y + ρ′,mp) are identical.

Proof. By Corollary 4.3 it suffices to give a proof for, say the take-away
game. For simplicity, by Corollary 4.2, we may assume ξ = 0. Suppose that
the CA has two-dimensional periodic patterns in some class, spatially and
timewise with period δ and ρ respectively. By Theorem 4.1 we get that the
outcomes of the positions (ϕ(x, y), y,mp) and (ϕ(x+ δ, y + ρ), y + ρ,mp) are
identical. Hence we can take δ′ = ϕ(δ, ρ) and ρ′ = ρ.
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Suppose, on the other hand, that the outcomes of the positions (X, Y,mp) =
(ϕ(x, y), y,mp) and (X+δ′, Y +ρ′,mp) = (ϕ(x, y)+δ′, y+ρ′,mp) are identical
with super-critical tape-heaps. If they are both P, then, by Theorem 4.1, we
have that ayx = ay+ρ′

x+δ′−γρ′ = 0. Further, by definition of P, for all 0 ≤ i < mp,

we also get ay+i
x = ay+i+ρ′

x+δ′−γρ′ = 0. This implies that if a pattern of N-
position is periodic and at least one of them is of type (b) in Corollary 4.2,
then all N-positions in this pattern are of type (b). Otherwise we get that

ayx = ay+ρ′

x+δ′−γρ′ = 1. In either case we can take δ = δ′ − γρ′ and ρ = ρ′. Since
we have assumed super-critical tape-heaps, the values of the CA correspond
precisely to those of the games according to Theorem 4.1. �

The method in the proof actually says that the (three-dimensional) game
positions define the pattern of the corresponding CA uniquely via its set of
P-positions. This observation is used again in the next result. Let A = (ai)
and B = (bi) denote doubly infinite binary strings. We say that the games
in T(A,Γ, γ) and T(B,Γ, γ) converge if, for all sufficiently large (x, y), their
respective outcomes of the triangle position (x, y, h) are the same, for all h.
We say that the games in G(A,Γ, γ) and G(B,Γ, γ) converge if, for all games
on sufficiently large time-heaps with super-critical tape-heaps, for all ξ and
mp, their outcomes are identical. The cellular automata CA(A,Γ, γ) and
CA(B,Γ, γ) converge if and only if, for all sufficiently large y, ayx = byx for all
x.

Lemma 4.5. Let A = (ai) and B = (bi) denote doubly infinite binary strings.
The games in T(A,Γ, γ) and T(B,Γ, γ) converge if and only if the games
in G(A,Γ, γ) and G(B,Γ, γ) converge if and only if the cellular automata
CA(A,Γ, γ) and CA(B,Γ, γ) converge.

Proof. The correspondence of the games is clear by Corollary 4.3. Since the
tape-heaps are super-critical, by Theorem 4.1, the outcomes for the respective
games in a family correspond precisely to the patterns of the corresponding
CA. Hence, by Theorem 4.1, if the CA converge, it follows that the outcomes
of the game families converge. For the other direction we use a similar
argument as in Lemma 4.4, the patterns of the CA is defined uniquely, given
only the description of the P-positions of the game, via the move-size dynamic
rule. �
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5. The rule 110 game and undecidability

In this section, we look into questions of decidability for the outcomes
of our games. The results may equivalently be interpreted in the setting
of the triangle placing games or the take-away games. By Lemma 4.4, it
is decidable whether the updates of any of our CA eventually become two-
dimensional periodic if and only if it is decidable whether the outcomes of
the corresponding game do. By Lemma 4.5, it is decidable whether two
games converge if and only if it is decidable whether the corresponding CA
converge. As we discussed briefly in the introduction, questions of algorithmic
decidability requires a finite input. For the CA, this is achieved by letting
the initial binary string be doubly periodic with a finite central data pattern.
Such a binary string can encode the ending condition of a (family of) game(s),
as described in previous sections.

By recent results of Matthew Cook [C04, C08] Wolfram’s rule 110 CA,
which in our notation is CA(A, 0, 1), is particularly interesting, and hence
also the games T(A, 0, 1) and G(A, 0, 1), called the rule 110 games. Let the
initial binary string of this CA be of the form A = LCR, where L,C and R
are finite binary strings (or equivalently integers coded in binary) and where,
as before, underscore denotes a periodic pattern. Cook proved the following
results.

Theorem 5.1 ([C04, C08]). For finite binary strings L and R and a central
finite data string C, it is algorithmically undecidable whether the rule 110
CA with LCR as input ever produces a given binary string.

The proof uses that the time-wise binary string “110101010111111” (or
equivalently the spatial binary string “01101001101000”) is produced if and
only if a certain F-glider is created in the interaction of other gliders from
the updates of the periodic L-pattern and the central C-pattern; Figures
13 and 14. Using cyclic tag-systems [C04, C08] a universal Turing machine
is programmed to halt if and only if the given binary string occurs in the
updates of the CA. This is how the rule 110 CA is proved undecidable. One
consequence of this result is that it is undecidable if the patterns in this
CA will ultimately become two-dimensional periodic. If the central program
goes into a loop, then the updates of the CA will consist of a finite number
of 2-dimensional periodic regions connected with (one dimensional) periodic
‘seams’ that will never meet. By Lemma 4.4, an analogous corollary holds
for our games.
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Corollary 5.2 ([C04, C08]). Let L, R and C denote finite binary strings. It
is algorithmically undecidable whether (the central data pattern of) the rule
110 CA with LCR as input becomes two-dimensional eventually periodic.

Corollary 5.3. For fixed binary strings L, R and a central data pattern
C, it is algorithmically undecidable whether the outcomes of the rule 110
games, with ending condition given by LCR, are two-dimensional eventually
periodic.

It is easiest to consider the triangle-placing game here, but Corollary 4.3
obviously applies so that the same result holds for the take-away game.

The halting problem for a universal Turing machine can also be translated
to the setting of our games via a finite path of alternating moves, every
second to a P position, traversing the F-glider, illustrated in Figure 14. Using
notation as in Corollary 5.3, we have the following result.

Corollary 5.4. Let L, R and C denote finite binary strings. It is algorith-
mically undecidable whether, for a finite path of consecutive moves in a rule
110 game with an LCR ending condition, every second position is P.

Proof. By [C04], it is undecidable wether the time-wise pattern

“110101010111111” (5.1)

ever appears in the update of the rule 110 CA given an LCR initial condition.
This pattern is produced in the interaction of the A- and C-gliders as the
F-glider is created. Now, what is required is to describe a move path such
that every second position is P and such that the pattern of the underlying
CA-updates are equivalent to (5.1). We begin by showing that if every second
position is P as indicated in the move path in Figure 14, then the pattern
in (5.1) will appear in the 0th column in cell 1 to 15. The path of moves
is (1, 16, 1) → (1, 15, 1) → (2, 13, 2) → (1, 12, 1) → (2, 9, 3) → (0, 8, 1) →
(0, 7, 1) → (0, 6, 1) → (0, 5, 1) → (0, 4, 1) → (0, 3, 1) → (0, 2, 1) → (1, 0, 2),
where the origin is shifted as to simplify our description.

Starting from below, we find the following two moves: (0, 3, 1)→ (0, 2, 1)→
(1, 0, 2). Now, translating (5.1) from left to right, these moves force the pat-
tern “110”. Let us explain why this is so. The position (0, 2, 1) is N, but
has to cover a “1”, a dark (red) cell, since otherwise (0, 3, 1) cannot be a
P-position, because any P-position has to cover a “0” and simultaneously
being supported by a “1”. Now, it remains to explain why the cell (0, 1)
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must cover a “1”. Suppose it covers a “0”. Then, by (1, 0, 2) being P and
by the updates of the CA, the cell (1, 2) also contains a “0”. But then, since
(0, 2) contains a “1”, (0, 3) must also, which contradicts its status as P. Hence
the three leftmost binary digits are correct.

Now, the pattern “11010101” follows by a similar argument, correspond-
ing to the 7 least positions in our move path. But for the following two binary
digits “0” and “1” corresponding to the cells (0, 8) and (0, 9) respectively we
need another argument. They are forced, because the position (2, 9, 3) is P.
Namely, it is immediate that the 3 cells (0, 9), (1, 9), (2, 9) contain “0”s. But
then cell (0, 8) cannot contain a “0”, again, since (2, 9, 3) is P.

It remains to verify the last sequence of six “1”s in the binary bit string,
starting with cells (0, 10) to (0, 12), which all must be “1”s since both (2, 9, 3)
and (2, 13, 2) are P. Namely, together they force that each one of the cells
(0, 12), (1, 12), (2, 12), (1, 11), (0, 10) contains a “1”. But then the updates of
the CA produces a “1” also in cell (0, 11).

Suppose now, for a contradiction, that cell (0, 13) contains a “0”. Then,
so does cell (2, 15), since (2, 13, 2) is P. But (1, 16, 1) is a P-position. Hence
cell (1, 15) contains a “1” and (1, 16) contains a “0”, which contradicts our
assumption. Together with the update rules of the CA, this also implies that
both (0, 15) and (0, 14) contain “1”s.

The other direction is immediate, since the binary string in (5.1) occurs if
and only if the F-glider is produced by an interaction of the A- and C-gliders,
which then also produces the rest of the patterns in Figure 14 as indicated. �

Returning to Lemma 4.5, and the first paragraph of Section 5, it remains
an open question whether convergence of rule 110 games is decidable given
two LCR ending conditions. Via private communication with Matthew Cook
we understand that such results do not follow from the methods used in [C04,
C08]. Also, to our best knowledge, the problems of decidability discussed
in this paper remain open for the CA(LCR,Γ, γ) and corresponding game
families for other combinations of γ and Γ than γ ∈ {0, 1} and Γ = 0.

6. Discussion

The purpose of this paper has been to emulate well known cellular au-
tomata via impartial games following the normal play convention. On the
one hand, there is an ‘unintelligent system’, in fact sometimes called a zero
player game, with a very simple update function, which takes into account
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only the most recent history. On the other hand there are two combatants
who play intelligently in the attempt of being the first to reach a given goal;
and where arbitrarily large moves are allowed. In spite the apparent big dif-
ferences between the games and the CA, we have showed that the patterns
produced by the respective systems correspond precisely and hence they are
equivalent in many respects. Moreover, since our rule 110 game emulate the
rule 110 cellular automaton, we have demonstrated how the undecidability
results from [C04, C08] transfer to our settings.

Other CA, for example from [W02], may have interesting interpretations
as combinatorial games. A standard variation of a combinatorial game is to,
at each stage of game, allow the previous player to block off exactly one of
the next player’s options [L11]. When a move is carried out, any blocking
maneuver is forgotten. Suppose that we apply this blocking maneuver to
the triangle-placing game. Is it possible to describe the P-positions for this
game directly from the updates of some one-dimensional CA? In general, one
can think of other rules for placing the triangles and/or using other types
of triangles [L]. When do they correspond to one-dimensional CA via their
outcomes?

A disjunctive sum of games consist of several components played simul-
taneously, but where it is legal to move in only one component at each stage
of game, the winner being the player who makes the last move in the last
component; [BCG04]. Note here, that the complexity of optimal play within
each component is increased, since a sequence of moves in a specific com-
ponent is not necessarily alternating between the two players. But, via the
so-called mex-algorithm—which computes a non-negative integer called the
nim-value for a normal play impartial game—the famous Sprague-Grundy
theory provides a simple formula (nim-sum) to compute the nim-value for
a disjunctive sum of a finite number of normal play impartial games. (The
nim-value is 0 if and only if the second player to move wins.) Can the nim-
values, of say our rule 60 and rule 110 games, be interpreted via the updates
of some (non-binary) one-dimensional cellular automaton?

For a partizan [BCG04] variant of our games we suggest to color the ter-
minal bit-string in a red-blue pattern. The players, “Red” and “Blue”, play
as usual, but Blue can place an IRT with its base covering the terminal bit-
string if and only if it covers only blue cells, whereas Red’s final IRT must
cover only red cells at the terminal level. Another partizan variation is to
let the players move from different triangle supports, but where the terminal
bit-string is the same for both players. For example, let Red move from sup-
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ports as in rule 60 and Blue from those in rule 110. (In a sum of games this
is not the same as saying that Red places rule 110 triangles, whereas Blue
places rule 60 ditto; it is better to simply let the players place IRTs.) There
are four outcome classes for partizan games. Is there any correspondence of
them to updates of some one-dimensional cellular automaton? The intuition,
of course, is that Blue is favored in this sample rule 60/110 game and that
it could at least be experimentally verified (via canonical game values) for
small game boards.
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good suggestions. I am also grateful to the anonymous referees, whose com-
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Figure 13: A collision of a C-glider (running North) and an A-glider (running North West),
in background ether, is captured in the central frame of 3× 17 cells. The collision creates
the more complex F-glider, of which a good period is displayed (running North North
East). The bit string “110101010111111”, which is contained in the central frame, is also
displayed in Figure 14. We have indicated the “0”-cells of the gliders in white (and yellow).
The other “0”-cells (in orange) belong to the 14 cell spatially periodic background ether.
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Figure 14: The pattern “110101010111111” is contained within the dashed frame—the
content of the first to the 15th cell in the 0th column—as it appears in the creation
of the F-glider by the collision of the A- and C-gliders in Figure 13. A corresponding
alternating path of P- and N-positions, with notation as in the triangle-placing game,
is also shown: (1, 16, 1) → (1, 15, 1) → (2, 13, 2) → (1, 12, 1) → (2, 9, 3) → (0, 8, 1) →
(0, 7, 1)→ (0, 6, 1)→ (0, 5, 1)→ (0, 4, 1)→ (0, 3, 1)→ (0, 2, 1)→ (1, 0, 2).
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