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Abstract

An invariant subtraction game is a 2-player impartial game defined
by a set of invariant moves (k-tuples of non-negative integers) M.
Given a position (another k-tuple) & = (21, ..., %), each option is of
the form (z1 — myq,...,zx — my), where m = (mq,...,my) € M, and
where z; — m; > 0, for all . Two players alternate in moving and
the player who moves last wins. The set of non-zero P-positions of
the game M defines the moves in the dual game M*. For example,
in the game of (2-pile Nim)* a move consists in removing the same
positive number of tokens from both piles. Our main results concern
a double application of *, the operation M — (M*)*. We establish
a fundamental ‘convergence’ result for this operation. Then, we give
necessary and sufficient conditions for the relation M = (M*)* to
hold, as is the case for example with M = k-pile Nim.

Keywords: Dual game; Game convergence; Game reflexivity; Im-
partial game; Invariant subtraction game; x-operator

1 Introduction and terminology

An invariant subtraction game [DR10, LHF11] is a two-player impartial
combinatorial game (see [BCGO1] for a background on such games) de-



fined on a set of positions represented as k-tuples @ = (xy,...,x), where
ke N=1{1,2,...} and x; € Ny = NU{0}. The move options are determined
by a set, M C N\ {0}, of invariant moves. Each option, from a given

position & = (z1,...,xx), is of the form
rToOm= (zl _mla"ka_mk)?
where m = (my...,mg) € M and where x; > m;, for all i. The latter

relation is also denoted & = m (and > means that strict inequality holds
for at least one coordinate). The players alternate in moving and a player
who cannot move loses. Clearly, this setting excludes the possibility of a
draw game, but it includes many classical “take-away” games [G66, S70, Z96]
played on a finite number of tokens, e.g. Nim [B1902], Wythoff Nim [W1907],
the (one-pile) subtraction games in [BCGO1].

Remark 1. Our setting is very similar to the “take-away” games in [G66].
However, since nowadays the term “take-away” often includes the possibility
of a certain form of “move dependence” [S70, Z96] which we are not con-
sidering here, we prefer to use the terminology introduced in [DR10]. Also,
we differ from [G66] in the definition of the ending condition of a game.
Golomb’s unique winning condition s a move to 0, so that in his setting
many games are draw. (He also allows for the possibility of the vector O as
a move. )

We identify an invariant subtraction game with its set of moves M and
call a position N if the player about to move (the next player) wins; otherwise
it is P (the previous player wins). Hence, a position is P if and only if each
of its options is N. A position @ is terminal if 0 < y < x implies y ¢ M.
Hence, each terminal position is P. Altogether this gives that the sets of N-
and P-positions are recursively defined. We denote these sets by N (M) and
P (M) respectively.

Suppose that X C Nf. Then, we denote by X’ the set X \ {0}. Let M
be an invariant subtraction game. Then the dual game of M is defined by
M* = P(M)" and M is reflezive if M = P(M*) that is if M = M**, where
M** stands for (M*)*. Note that M* is reflexive whenever M is.

A sequence of invariant subtraction games (M,);en, converges if, for all
x € Nf, there is an ng = no(x) € Ny such that, for all n > ny, for all y < @,
y € M, if and only if y € M,,,. If (M;);en, converges, then we can define
the unique ‘limit-game’ of the sequence, denoted by lim;ey, M;. For i € N,
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let M' denote the game (M*~1)* where M® = M is an invariant subtraction
game.
Let us state our two main results, proved in Section 2 and 3 respectively.

Theorem 1. Let M® = M denote an invariant subtraction game. Then the
sequence (M*);en, converges.

Let X C NE. Then we denote by D(X) the set {x Oy = 0| z,y € X}.

Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent,

(a) M is reflexive,
(b) M = lim;ey, X*, for some invariant subtraction game X = X°,
(¢c) D(M) CN(M).

In Example 1 and Figure 1 we demonstrate a simple application of Theo-
rem 2 (c). In Example 2 and Figure 2 we show an example of a game which
has a very simple structure, but for which we do not know whether reflexivity
holds for any game resulting from a finite number of recursive applications of
the x-operator. (Due to computer simulations there appears to be many such
games.) In Section 3 we study a consequence of Theorem 2, which relates to
the type of question studied in [DR10, LHF11]. We give a partial resolution
of the problem: given a set S C N& is there an invariant subtraction game
M such that P(M) = S?

Example 1. In Figure 1, by Theorem 2 (c¢), M is non-reflexive since (1,2)&
(1,1) = (0,1) € P(M). Neither is the dual, M*, since (1,0) and (3,2) are
moves, but (3,2) & (1,0) = (2,2) € P(M*). On the other hand M*™ =
{(1,1)(2,2)} is reflexive, since (2,2) & (1,1) = (1,1) € M*™* C N(M*).
Hence M™ 1is reflexive for all n > 2.

Example 2. In Figure 2, notice that (3,5)©(2,2) = (1,3) € P(M), so that
by Theorem 2 (c), M is non-reflexive (as is also clear by the figures). How-
ever, due to these experimental results, M"™ N {(i,j) | i,7 € {0,1,...,100}
is identical for n = 8 and n = 10 and hence, for all even n > 8 (and sim-
ilarly for all odd n >9). Of course, by Theorem 1, we get that lim M?
exists. However, we do not know whether there exists an n > 8 such that
M™ = lim M?* (see also Question 2 on page 14).
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Figure 1: The figures illustrate three recursive applications of the x-operator
on M = {(1,1),(1,2)} (for positions with coordinates less than 20). In the
upper left figure the green squares represent the two moves in M and the
repetitive blue pattern its (initial) set of P-positions; the upper right figure
illustrates the repetitive patterns in M* with its (finite) set of P-positions,
and so on.

2 Convergence

Let us begin by proving Theorem 1. The first item in the next lemma is also
proved in [LHF11].

Lemma 1 ([LHF11]). Let M denote an invariant subtraction game. Then
(a) PIM)NM =10,
(b) M*NM =10, and
(c) P(M) N P(M*) = {0}.



Figure 2: The upper left figure represents the invariant subtraction game
M ={(2,2),(3,5),(5,3)}. The following figures illustrate 10 recursive ap-
plications of the x-operator on this game (for coordinates less than 100).

Proof. Let m € M and note that m & m = 0 € P(M), which gives
m € N(M). This proves (a). By the definition of the x-operator we have
that M* = P(M)’. Hence (a) gives (b) and (c). O

The next lemma concerns consequences of Lemma 1 for the xx-operator.

Lemma 2. Let M denote an invariant subtraction game.

(a) Suppose that x € M\ M**. Then x € N (M*)\ M*.

(b) Suppose that 0 < x € Nf is such that, for all m < x, m € M if and
only if m € M**. Then

x & M*\ M. (1)



Proof. Assume that the hypothesis of item (a) holds. Then, since x € M,
by Lemma 1 (a), * ¢ P(M), so that & ¢ M*. Also, since x ¢ M*™, by
definition of x, we get that & € N (M*).

For (b), suppose that the negation of (1) holds, that is that x € M**\ M.
Then

x € P(MYY, (2)

which, by Lemma 1 (c), gives & ¢ P(M). Altogether, we get that x €
N (M) \ M. Then, by definition of N, there is a move, say m € M, with
m < x, such that

y=xomePM) =M

By the assumption in the lemma we have that m € M** = P(M*)". Hence,
m = x © y is a P-position in M”* and, since y € M”*, x is an N-position in
M?*, which contradicts (2). O

Proof (of Theorem 1). Let M denote an invariant subtraction game.
Suppose that

x e Nf\ {0} (3)
is such that, for all y < «,
y € M if and only if y € M™. (4)
Then clearly
y € P(M) if and only if y € P(M™), (5)
so that, by definition of ,
y € M* if and only if y € M? (6)
and hence
y € P(M*) if and only if y € P(M?). (7)

Therefore, a repeated application of x gives

y € M? if and only if y € M2



and also
y € M**Lif and only if y € M?*3,

for all 7 € Nj.

Suppose that « is of the form in (3) and (4). Then, by the definition of
convergence, it suffices to demonstrate that the minimum value i = i(z) for
which

x € M?* if and only if x € M**2 (8)

is bounded. Precisely, we will show that ¢ = 1 suffices, which means that
to satisfy (8), at most 2 iterations of ** is needed, for each position which
satisfies the requirements of @ in (4). We then get that, for any game M
and any position x, it suffices to take ny = 2]_[;“:1 x; in the definition of
convergence.

We have four cases,

(A) & € N(M) NN (M),

(B) @ € P(M)NPM™),

(C) & € N (M) NP(M*) or

(D) @ € P(M) NN (M*™).

(which gives i = 0 in (8)). Similarly, for case (D), by using Lemma 1 (a)
twice, since & € P(M) = M*, we get & & M and & ¢ P(M*) = M*

(which again gives ¢ = 0 in (8)).
It remains to investigate case (A) and (C).

At first, notice that (B) together with Lemma 1 (a) implies € ¢ MUM**
)
/

Case (A): By Lemma 2 (b), we have that ¢ M** \ M. Therefore, we may
assume that

x e M\ M (9)
since otherwise we are done. By Lemma 2 (a), this gives that

x € N(M*)\ M*. (10)



Hence, by definition of N in M*, we get that there is a position y € P(M*)’
such that

m=xOyc M (11)
By (6) this implies that m € M3 and by (7) that y € P(M3). Thus, by
definition of P in M3, the equality in (11) implies that £ € N (M?3). Hence,

by the definition of the x-operator, we have that @ & M?*, which, by the
assumption (9), suffices for convergence.

Case (C): Since & € N(M), the definition of x gives x ¢ M*. Hence, by
x € P(M*) and Lemma 1 (c), since = 0, we get that & P(M*) and
thus € € N(M*) \ M*. As in the proof of (A), from (10) onwards, this
gives that & € M*. Also, Lemma 1 (a), gives that £ ¢ M**, which proves
convergence. [

3 Reflexivity

In this section we discuss criteria for reflexivity of a game. We begin by
proving Theorem 2. Let us restate it.

Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent.

(a) M is reflexive,
(b) M = lim;ey, X, for some invariant subtraction game X = X°,
(¢) D(M) S N(M).
Proof. If M = M* then M?* = M?*2 for all i > 0, so that lim M? = M.

If M = lim M?* exists, then M** = (lim M?)* = lim M* = M. Hence, it
remains to prove that M is reflexive if and only if D(M) C N(M).

“=": Suppose that M is reflexive. Then, we have to prove that D(M) C
N(M). Suppose, on the contrary, that there are distinct my, my € M such
that

m; S my=x € P(M). (12)



Then, by definition of x,
x € M. (13)

Also, by reflexivity, we get that {m,, ms} C M** = P(M*)". But, by (12)
and (13), this means that there is a move from a P-position to another P-
position in M*, which is impossible.

“<”: Suppose that D(M) C N (M) but M # M**. Then there is some least
m € (M\ M*)U (M \ M), which, by Lemma 2 (b), gives m € M\ M*.
By Lemma 2 (a), we get m € N(M*)\ M*. Then, by definition of N in
M*, there is an & € M* such that

mox=yePM). (14)

Then, by definition of *, we get y € M* and so, by minimality of m,
y € M N M* so that both m and y are moves in M. But then (14) to-
gether with the definition of & and the x-operator give m oy = x € P(M),
which contradicts D(M) C N(M). O

By Theorem 2 (c), one never needs to compute P(M?*) to decide whether
M is reflexive or not. Sometimes a very incomplete understanding of the
winning strategy P (M) suffices. Namely, to disprove reflexivity of M it
suffices to find a single P-position & > 0 which connects any two moves
mq,my € M in the sense that € = m; © my. If M were reflexive this
would imply m,,ms € M* = P(M*), with & € P(M) = M*, which is
impossible. See also Example 4. On the other hand, to prove reflexivity, it
suffices to find some subset X C N (M) such that D(M) C X holds.

In particular, if we can take X = M we obtain very simple reflexivity
properties. Namely, whenever D(M) C M, the game M is ‘trivially’ reflex-
ive, that is, for this case we do not even need to study P(M) to establish
reflexivity.

Let X C N’{j. Then the set X is

e subtractive if, for all x,y € X, with x <y, yox € X.

e a lower ideal if, for all y € X, < y implies ¢ € X. (Hence the set of
terminal P-positions of a given invariant subtraction game constitutes
a lower ideal.)



e an anti-chain, if all distinct pairs @,y € X are unrelated, that isx <y
implies x = y.

We have the following corollary of Theorem 2 (see also Figure 3 for an
application of (a)).

Corollary 1. The invariant subtraction game M is reflexive if, reqarded as
a set,

(a) M is subtractive,
(b) M is a lower ideal,

(¢c) M ={(z,0,...,0),(0,2,0,...,0),...,(0,...,0,z) € Nt | z € N}, that
is M represents the classical game of k-pile Nim [B1902],

(d) M is an anti-chain, or
(e) M € {0,{m}}, that is M consists of at most a single move.

Proof. For (a), notice that
DM) ={m; ©my > 0| m;,my € M} C M C N(M),

which, by Theorem 2, gives the claim. Then, the inclusions of families of
games {M.} C {M,;} C {M,} and {M.} C {M;} C {M,} prove the
corollary, where M; denotes the game given by the set M as in item (7). O

Example 3. In Figure 1, M** = {(1,1),(2,2)} is subtractive and hence,
by Corollary 1, reflexive, but M = {(1,1),(1,2)} is neither. For another
example, the invariant subtraction game M = {(1,1),(2,2),(0,8),(8,0)} is
subtractive and hence reflexive. Hence its dual game M* = P(M)’ is also
reflexive (but not subtractive). Figure 3 represents the first few moves of
M*={(1,1),(2,2),(0,8),(8,0)}*. In spite of the simplicity of the game M,
the P-positions seem to have a very complex structure (in the sense of [F04]).
It seems to be a-periodic in general, but asymptotically periodic for each fized
x-coordinate (or y-coordinate), but we do not understand these patterns yet.
See also the final section for a comment regarding undecidability of games
with a finite number of moves.

We believe that there are many more interesting applications of Theo-
rem 2. Let us begin with two of them.
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Figure 3: The dual game M* for the invariant subtraction game M =

{(1,1),(2,2),(0,8),(8,0)}.

3.1 A consequence of reflexivity

Given a ‘candidate’ set 0 € S C Nf of P-positions, is there an invariant
subtraction game M such that P(M) = S? This type of question was
introduced in [DR10], together with a challenging conjecture on a family of
sets S C NZ defined by a certain class of increasing sequences of positive
integers. (The conjecture was resolved in [LHF11].) As a consequence of
Theorem 2 (and Corollary 1), we are able to shed some new light on this
type of question for general sets S.

Corollary 2. Let 0 € S C Nk, k € N. If the invariant subtraction game S’
15 reflexive, so that, by Theorem 2,

D(S) C N(Y), (15)
then there is an invariant subtraction game M satisfying
P(M)=S5. (16)
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Specifically, one such game M is given by the recursive construction which
defines the set of P-positions of the invariant subtraction game S’.

Proof. Suppose that (15) holds and take M = P(S")" = (5')*. Then, since
S' = (9, PM) =P((5)) = (5')* =5 gives the claim. O

It is easy to find sets S which do not satisfy (16) for any M (and where
the invariant subtraction game S’ is non-reflexive). See also [DR10, LHF11]
and [G66, Theorem 3.2] for related results.

Example 4. Let S = {(1,1),(1,2)} (see also Example 1 and Figure 1).
Then D(S") = {(0,1)} C {(0,z) | x € No} C P(S') so that reflexivity of S’
does not hold. Further, for this choice of S, there is no invariant subtraction
game M which satisfies (16). Indeed, by the definition of N, since (0,1) is
not a (candidate) P-position, it has to be a move in M. But this contradicts
the definition of P since (1,2) & (1,1) = (0,1).

On the other hand, Figure 1 also illustrates that a non-reflexive game,
namely M*, might produce a reflexive S" = M** (Wythoff Nim is another
such example [LHF11]), see also Question 2. However it is not necessary that
S" is reflexive for (16) to hold. A non-reflexive M can produce a non-reflexive
S" as we have seen in Figure 1 (take S" = M*) and also in Figure 2 (take
S = M', many 1).

Let us give another example of a non-reflexive game S’ which satisfies
(16). We believe that strictly more than two P-positions are needed for such
examples to hold.

Example 5. Suppose that S" = {(0,1),(1,0),(1,1),(3,3)}. Then Corollary
1 does not give any information on whether there is an invariant subtraction
game M such that (16) holds. Namely we have that (2,2) € D(S) N P(5"),
which contradicts (15) (and thus reflexivity of S’). However, by inspection
one finds that S C P(Q) for Q ={(0,2),(2,0),(1,2),(2,1)}. Then, in spite
of the observation that S" is non-reflexive, this gives the existence of a game
M satisfying (16). (For example take M = QU {(x,y), (y,x) | x > 4}.)

3.2 Decidability and reflexivity

A very simple configuration of moves, e.g. as in Figure 3, can have a very
complex set of P-positions (dual game). In fact, suppose the invariant sub-
traction game M C NF has finite cardinality. Then we wonder whether it is
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algorithmically decidable if a given k-tuple (> 0) appears as a difference of
any two P-positions in M; that is if the set of P-position changes if we ‘mod-
ify” an invariant subtraction game M and rather play MU{m}, m € N{. (In
[LW] we prove undecidability in a related sense for a similar class of invariant
games.)

However, by Theorem 2, since D(M) is finite whenever M is, it takes at
most a finite computation to decide whether M is reflexive or not. Hence
we get another corollary of Theorem 2.

Corollary 3. Suppose that the number of moves in the invariant subtraction
game M is finite. Then the problem of determining whether the game M is
reflexive or not is algorithmically decidable.

4 Discussion

In this paper we have presented some general territory of invariant subtrac-
tion games and the x-operator. The issues of convergence of the xx-operator
have been completely resolved, but we have not found any explicit formula
for a ‘non-trivial limit-game’. By ‘trivial limit-game’ we here mean a game
H which satisfies H = M?" = lim M?! for some n € N and some game M.

Problem 1. Prove or disprove that all limit games are trivial. In the latter
case give an explicit formula for a non-trivial limit game without the mention
of a limit of a sequence of games.

Our next question is a continuation of the examples in Section 3.

Question 1. Exzamples 4 and 5 suggest a classification of ‘non-reflexive’ sets
S" C NE, that is, by Theorem 2, sets for which there exists a pair x,y € S’
such that x ©y € P(S"). The first class should contain those sets S for
which there ezist an invariant subtraction game M such that P(M) = S
and the second, those for which there is no such game. Suppose there exists
a pair x,y € S" such that the only possible ‘candidate move’ fromm = xSy
to another position in S is to 0. Then, we are in Example 4 and so in the
second class. On the other hand, Fxample 5 gives an example when there is
no such pair ©,y. But suppose that the positions (2,3) and (3,2) are included
to the set S in Example 5. Then, neither the move (2,2) nor the moves (1,2)
and (2,1) may be included to the candidate set M, and hence S would have
belonged to the second class. Is there an explicit and exhaustive classification
which settles the type of question suggested by Example 4 and 57
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In Figure 1 we gave an example of a non-reflexive game with a non-
reflexive dual, but where the dual of the dual is reflexive. The example of
the ‘symmetric’ game M = {(2,2),(3,5), (5,3)} from Figure 2 contains only
three moves, but we were not able to determine whether there is an n such
that M™ is reflexive or not. This discussion leads us to our final question.

Question 2. Is there, for each n € N, a game M such that M" s reflexive,
but M™1 is not?

We do not know if the answer to Question 2 is positive for any n > 3.
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