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Abstract
The P-positions of the 2-pile take-away game of Wythoff Nim lie on two beams
of slope

√
5+1
2 and

√
5−1
2 respectively. We study extensions to this game where a

player may also remove simultaneously pt tokens from either of the piles and qt
from the other, where p < q are given positive integers and where t ranges over
the positive integers. We prove that for certain pairs (p, q) the P-positions are
identical to those of Wythoff Nim, but for (p, q) = (1, 2) they do not even lie on
two beams. By several experimental results, we conjecture a classification of all
pairs (p, q) for which Wythoff Nim’s beams of P-positions transform via a certain
splitting behavior, similar to that of going from 2-pile Nim to Wythoff Nim.

1. Introduction

We study generalizations of the 2-player impartial take-away games of 2-pile Nim
[2] and Wythoff Nim [7, 8, 9, 10, 11, 12, 15]. A background on impartial (take-away)
games can be found in for example [1, 4]. We use some standard terminology for
such games without draws. A position is a previous-player win, a P-position, if
none of its options are P-positions; otherwise it is a next-player win, an N-position.
We follow the conventions of normal play, that is, a player who is not able to move
loses and the other player wins. Thus, given an impartial game, we get a recursive
characterization of the set of all P-positions.

Let N denote the positive integers and N0 the nonnegative integers. A legal move
in 2-pile Nim is to remove an arbitrary number of tokens from precisely one of the
piles, at least one token and at most the whole pile. These type of moves can be
coded in the form (0, t), (t, 0), t ∈ N. It is easy to see that the P-positions of this
game are those where the pile heights are equal, that is (x, x), for x ∈ N0, [2]. We
regard these positions as an infinite P-beam of slope 1, with its source at the origin.
See Figures 1 and 2. In the game of Wythoff Nim a player may move as in Nim and
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also diagonally, that is a player may make the move (t, t), t ∈ N, that is remove the
same number of tokens from each pile but at most a whole pile. Let

φ =
√

5 + 1
2

denote the Golden ratio. It is well-known [15] that a position of this game is P if
and only if it belongs to the set

P(WN) = {(�φx�, �φ2x�), (�φ2x�, �φx�) | x ∈ N0}.

Thus, in the transformation from 2-pile Nim to Wythoff Nim, the Nim-beam of
P-positions has split into two distinct beams, with sources at the origin, of slopes
φ and 1/φ respectively. The intuitive meaning of the term split, defined formally
in Section 4, is that there is an infinite sector, in-between two infinite regions of
P-positions, which is void of P-positions.

This geometrical observation of the splitting of P-beams, going from Nim to
Wythoff Nim, has motivated us to ask the following intuitive question. Does this
splitting behavior continue in some meaningful way if we adjoin, to the game of
Wythoff Nim, some generalized diagonal moves of the form

(pt, qt) and (qt, pt), (1)

where p, q ∈ N are fixed game parameters and where t ranges over N, and then play
the new game with both the old and the new moves? That is, in addition to the
rules of Wythoff Nim, a legal move is to remove simultaneously pt tokens from either
of the piles and qt from the other of course restricted by the number of tokens in the
respective pile. Does the answer depend on the specific values of p and q? We let
(p, q)GDWN, 0 < p < q, denote this Generalized Diagonal Wythoff Nim extension
and P(p, q) its set of P-positions. See Figure 1 for the rules of (1, 2)GDWN and its
first few P-positions. In Figure 2 we give a macroscopic view of the corresponding
P-beams. Given such a game, we define the sequences a = a(p, q) = (an)n∈N and
b = b(p, q) = (bn)n∈N via

P(p, q) = {(an, bn), (bn, an) | n ∈ N} ∪ {(0, 0)} (2)

where the ordered pairs of the form (an, bn), the upper P-positions, are distinct,
where an ≤ bn, for all n ≥ 1 and the sequence a is non-decreasing. For a technical
reason we omit the terminal P-position (a0, b0) = (0, 0) in the definition of a and
b. Here we have used that, since the moves of (p, q)GDWN are symmetric, that is
(m1,m2) is a move if and only if (m2,m1) is, the P-positions are also symmetric.
The purpose of this paper is to investigate some properties of the sequences a and
b from (2).

Our main theorem considers a necessary condition for a splitting of Wythoff
Nim’s upper P-beam for the case (1, 2)GDWN. (See also Conjecture 11 on page
15.)
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Figure 1: The figures illustrate typical moves (in dark gray) and initial P-positions
of Nim, Wythoff Nim, and (1, 2)GDWN respectively. The black square is a given
game position. The white P’s represent the winning options from this position.

Figure 2: These figures give the initial P-positions of the games Nim, Wythoff Nim
and (1, 2)GDWN. The left-most figure illustrates 2-pile Nim’s single P-beam of slope
1. Then, in the middle we illustrate Wythoff Nim’s pair of P-beams with slopes φ
and 1/φ respectively and, at last, we present the initial P-positions of (1, 2)GDWN,
where our computations, for all x-coordinates ≤ 50000, seem to suggest that each
one of Wythoff Nim’s P-beams has split into two new distinct P-beams. See also
Figures 3, 4 and 9.
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Theorem 1. Let P(1, 2) define the sequences a = a(1, 2) and b = b(1, 2). Then the
limit

lim
n∈N

bn

an

does not exist.

In Section 2 we give the proof of Theorem 1. In Section 3, we prove that a
certain subfamily of (p, q)GDWN games have identical P-positions as Wythoff Nim.
In Section 4 we state two conjectures, supported by various experimental data and
figures. Finally, in Section 5 we discuss some further directions for future research.

2. A Resolution of Theorem 1

Two sequences of positive integers are said to be complementary if each positive
integer occurs precisely once in precisely one of these sequences (see, e.g., [7]). The
following is a basic result concerning the sequences defined in (2).

Proposition 2. Let P(p, q) = {(ai, bi), (bi, ai)}∪{(0, 0} define the sequences a and
b, of which a is non-decreasing and, for all n ∈ N, an ≤ bn. Then

(i) a1 = 1,

(ii) ai < bi, for all i > 0,

(iii) ai �= ai+1, for all i, that is a is strictly increasing,

(iv) ai �= bj for all i > 0 and j > 0,

(v) for each n ∈ N there is an i such that either ai = n or bi = n,

that is, a and b are complementary.

Proof. By (0, 0) ∈ P(p, q) and by the Nim-type moves, there can be no P-position
of the form (0, x), x ∈ N. For (i), notice that there is a least x such that (1, x)
is P. Namely, if (p, q) = (1, 2) then x = 3, otherwise x = 2. Clearly (ii) follows
from (iv), but it makes sense to start with (ii). Thus, suppose ai = bi for some
i > 0. Then (ai, bi) → (0, 0) is a legal diagonal-type move, which contradicts the
definition of P. For (iii), suppose that ai = ai+1 for some i. Then, by (i), i > 0 and
so either (ai+1, bi+1) → (ai, bi) or (ai, bi) → (ai+1, bi+1) is a legal Nim-type move,
but either case is ridiculous by definition of P. For (iv), suppose that there were
integers i > j > 0 such that ai = bj . Then (ai, bi) → (bj , aj) is a Nim-type move
since, by (ii), bi > ai = bj > aj , a contradiction. For (v), let n ∈ N. Then, each
position of the form

(am, bm), am < n or (bm, am), bm < n (3)
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can, by the rules of (p, q)GDWN, be reached by at most four positions of the form
(n, ·). By (iii) and (iv), there are at most n positions of the form in (3). We
conclude that there exists a least x ≤ 4n such that the position (n, x) does not have
a P-position as an option. Then (n, x) is P and hence of the desired form.

Let R denote the real numbers and let f, g : N0 → R. We use the notation
f(N) � g(N) if f(N) < g(N) for all sufficiently large N . (And analogously for �),
where the term sufficiently large is explained by each surrounding context.

We have use for a well-known and general result (often phrased in terms of
bipartite graphs). Simple as it is, it turns out to be a very useful tool.

Lemma 3. Let A = {Ai} and B = {Bi} denote sets of positive integers satisfying
Ai < Ai+1, Ai ≤ Bi, for all i ∈ N and, for each N ∈ N, there is precisely one i
such that

Ai = N or Bi = N, (4)

(possibly both). Then, for all N ∈ N,

#(A ∩ {1, . . . , N}) ≥ N

2
.

Proof. Put n = n(N) := #(A ∩ {1, . . . , N}) and note that An ≤ N < An+1.
Suppose on the contrary that

2n < N (5)

for some N ∈ N. By definition, Bn+1 ≥ An+1 > N , so that there are at most n
numbers from the B-sequence less than or equal to N . This gives

2n ≥ #(A ∩ {1, . . . , N}) + #(B ∩ {1, . . . , N}) ≥ N > 2n,

where the last inequality is by (5).

Note that our sequences a and b satisfy the conditions of (Ai) and (Bi) in Lemma
3. The next lemma deepens this result to another powerful tool for our purposes.
Roughly spoken, it concerns the structure of P-positions for extensions of Wythoff
Nim.

Lemma 4. Let A = (Ai) and B = (Bi) denote complementary sequences of positive
integers satisfying, for all i, j ∈ N, Ai < Ai+1, Ai ≤ Bi and

Bi −Ai = Bj −Aj if and only if i = j. (6)

Then the set {i | Bi > φAi} is infinite.
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Proof. Let C ∈ R with C > 1 and define the set

S = S(C) := {i | Bi < CAi} .

For all i, define
δi := Bi −Ai ≥ 0.

Suppose that S contains all but finitely many numbers and let

n > max{δi | i ∈ (N0 \ S)}. (7)

By definition of A and B, there is an x ≤ n such that δx ≥ n. Together with the
definition of S this gives,

1 +
n

Ax
=

Ax + n

Ax
≤ Bx

Ax
< C,

so that

n � (C − 1)Ax ≤ (C − 1)An, (8)

since (Ai) is increasing. On the other hand, by Lemma 3, we have that n ≥ An
2 , so

that we may conclude that C > 3
2 . Denote with c = C − 1 > 1

2 .

For sufficiently large n, by (8) and complementarity, the number of i’s such that
Bi < An is

An − n � (2− C)An = (1− c)An, (9)

which, by (6) gives that, there is a least j ≤ n, such that

δj ≥ (1− c)An. (10)

We may ask, where is this least j? Define the set

ρ = ρ(c, n) := {i | Ai ≤ cAn}.

Case 1 If j ∈ ρ, then

C � Bj

Aj
= 1 +

δj

Aj
≥ 1 +

1− c

c

which is equivalent to
C2 > C + 1,

which holds if and only if C > φ.

Case 2: If j �∈ ρ, then since Bj is the least number in the B-sequence such that
(10) holds, for i < j, we get Bi < (1 − c)An + Ai ≤ An. But then, by (9),
(1− c)An ≤ max ρ. By applying the same argument as in (8), we also have that

max ρ � c2An

and so, again, C > φ.
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For the rest of this section, we let (ai) = a(1, 2) and (bi) = b(1, 2).

Proposition 5. Let R := {bi/ai | i ∈ N}. Then the following three items hold.

(i) The set (φ,∞) ∩R is infinite.

(ii) Let C < 2 ≤ D denote two real constants with β := D − C < 1/2. Then
([1, C) ∪ (D,∞)) ∩R is infinite.

(iii) The set [1, 2] ∩R is infinite.

Proof. Item (i) follows since, by Proposition 2, the sequences a and b satisfy the
conditions of A and B in Lemma 4, respectively. (The condition (6) is satisfied,
since otherwise a removal of the same number of tokens from each heap would
connect two P-positions, which is impossible.)

For item (ii), suppose, for a contradiction, that all but finitely many ratios from
R lie in [C,D] and define

r := #{i | bi/ai �∈ [C,D]}.

Suppose now that bi/ai ∈ [C,D] with ai ≤ N , N ∈ N. Then we get

2(N − ai) + bi ∈ I(N) := [CN,DN ]. (11)

The upper bound follows from bi − 2ai ≤ Dai − 2ai ≤ (D − 2)N and the lower is
similar.

Denote by J(N) the number of pairs (ai, bi) with ai ≤ N such that bi/ai ∈ [C,D].
Then, by Lemma 3 and definition of r, for all N > r,

J(N) ≥ N

2
− r.

This gives that, for all � > 0, for all sufficiently large N = N�, we have that

J(N)− 1
N

≥ 1
2
− r + 1

N
>

1
2
− �. (12)

In particular we may take � := 1/2−D +C > 0 and define N as N �, a fixed integer
strictly greater than 2(r+1)

1−2(D−C) . The number of integer points in I(N �) is

�DN �� − �CN ��.

If we divide this expression by N � and compare with our definition of �, we get

�DN �� − �CN ��
N � ≤ 1

2
− � +

1
N � .

Hence, by (12), we get that the number of integer points in the interval I(N �) is

�DN �� − �CN �� < J(N �). (13)
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Observe now that each pair (ai, bi), which is counted by J(N �), defines a line of
slope 2 which intersects the line x = N � at an integer point, which resides inside the
interval I(N �). Thus, by (13), the Pigeonhole principle gives that, for some integer
t ∈ I(N �), there exists a pair i < j < N � such that

t = 2(N � − ai) + bi

= 2(N � − aj) + bj .

But then 2(aj − ai) = bj − bi so that, by the definition of (1, 2)GDWN, there is a
move (aj , bj) → (ai, bi), which contradicts definition of P. This proves item (ii).

Let us proceed with item (iii). We begin by proving two claims.

Claim 1. Let N ∈ N0 be such that bN ≥ 2aN . Then, if there exists a least k ∈ N
such that bN+k > 2aN+k, it follows that bN+k − 2aN+k = bN − 2aN + 1. (By Table
1 the first such case is N = 0, k = 1 and the “γ-row” gives an initial sequence of
pairs “(Ni, ki)” as follows: (0, 1), (1, 1), (2, 5), (7, 1), (8, 2), (10, 4), (14, k8).)

bn 0 3 6 5 10 14 17 25 28 18 35 23 31 29 48 32

an 0 1 2 4 7 8 9 11 12 13 15 16 19 20 21 22

δn 0 2 4 1 3 6 8 14 16 5 20 7 12 9 27 10

γn 0 1 2 -3 -4 -2 -1 3 4 -8 5 -9 -7 -11 6 -12

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1: Here (an, bn) represents a P-position of (1, 2)GDWN for 0 ≤ n ≤ 18.
Further, δn = bn − an and γn = bn − 2an.

Proof of Claim 1. Suppose that N > 1 is chosen smallest possible such that, unlike
the assumption, there is a least k > 0 such that

bN+k

aN+k
> 2,

and bN+k − bN �= 2(aN+k − aN ) + 1. Then, by the minimality of N , we must have

bN+k − 1− 2aN+k > bN − 2aN , (14)

which, by Proposition 2, implies that (aN+k, bN+k − 1) is N. That is, there exists a
j < N such that

bN+k − 1− bj = γ(aN+k − aj),
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where γ = 0, 1
2 , 1 or 2. Put

y := bN − 2(aN − aj).

Altogether, by (14), we get

bj − y = (2− γ)(aN+k − aj) + 1 > 0.

But, by minimality of N , bj must be strictly less than y, a contradiction. �

From this point and onwards we assume that [1, 2] ∩ R is finite (and hence we
are going to find a contradiction). The next claim concerns a consequence of this
assumption combined with the result in Claim 1.

Claim 2. Suppose that [1, 2]∩R is finite. Then there is an r ∈ N such that, for all
N ≥ r, we have

bN+1 − bN = 3 and aN+1 − aN = 1 (15)

or

bN+1 − bN = 5 and aN+1 − aN = 2. (16)

Proof. Since [1, 2]∩R is finite, we get that, for some s ∈ N, for all j ≥ s, bj/aj > 2.
By Claim 1, since (ai) is increasing, this implies that bj+1 ≥ bj + 3. Further, by
definition of aN+1, if N is such that aN ≥ bs, this gives

aN+1 − aN ≤ 2. (17)

Plugging this into the result of Claim 1 we get either (15) or (16). This first part of
the proof of Claim 2 implies that both a and (bi)r≤i are strictly increasing. Then,
by complementarity of a and b it follows that (�) there are infinitely many N ’s such
that (16) holds. �

The remainder of the proof consists of a geometric argument contradicting the
‘greedy’ definition of the b-sequence. We show (implicitly) that there would be an
N-position too much if (iii) fails to hold.

By Claim 2, we can find r < u < v such that (16) holds for both bu < bv. Define
four lines accordingly:

lu(x) = x + bu,

lu+1(x) = x + bu + 3,
lv(x) = bv,

lv+1(x) = bv + 5,
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These fours lines intersect at the positions (lattice points) ((αi,βi))i∈{1,2,3,4} =
((bv − bu − 3, bv), (bv − bu, bv), (bv − bu + 2, bv + 5), (bv − bu + 5, bv + 5)), defin-
ing the corners of a parallelogram. Denote the set of positions strictly inside this
parallelogram by K. Then, by inspection

#K = 8

and, by (�), we may assume that we have chosen v sufficiently large so that, for all
(x, y) ∈ K,

1 <
y

x
< 2. (18)

Denote by L another set of lines satisfying the following conditions. A line l
belongs to L if and only if:

(a) Its slope is either 1/2, 2 or ∞.

(b) It intersect a point of the form (as, bs) or (bs, as) with s ≥ r.

(c) It intersects K.

By the definition of K it follows from (16) that i and j may be defined such that
each line of form (b) and (c) is also of the form (a). Again, by (�) we may assume
that we have chosen i and j sufficiently large so that the first part of (b) together
with (c) implies s ≥ r.

Claim 3 There is a game position (lattice point) in the set K \ L.

Clearly, by the definition of (bi) and by (18), this claim contradicts the assump-
tion that [1, 2] ∩ R is finite. (In fact it would imply the existence of an N-position
in K without a P-position as a follower.)

Proof of Claim 3. Let K� := {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3), (4, 3)}.
Then K� is simply a linear translation of K. (Namely, given (x, y) ∈ K, T (x, y) =
x− (bj − bi − 1), y − (bj + 1) ∈ K�.)

Let α ∈ R. Clearly, the two lines x+α and x+3+α can together cover at most
three points in K�, namely choose α = 0 or 1. The two lines 2x− α and 2x− 5− α
can cover at most two points in K�, namely we may choose α = 0, 2 or 3. (In fact,
for the two latter cases it is only the former line that contributes.) On the other
hand, the two lines x/2 + α and x/2 + 5/2 + α can cover at most two points in K�,
namely, if we choose α = 0, 1/2 or 1. (In fact, for these α, it is only the former line
that contributes.)

Fix any set of the above six lines, depending only on the choices of α for the
respective cases, and denote this set by L�. Then, as we have seen, #(L� ∩K�) ≤ 7.
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But, by Claim 2, an instance of L ∩ K is simply a linear translation of some set
L� ∩K�. �

The proposition now follows.

Let us conclude what has been accomplished so far.

Proof of Theorem 1 Suppose on the contrary that α := limn∈N
bn
an

exists. Then
either

(a) α ∈ [1,φ),

(b) α ∈ [φ, 2], or

(c) α ∈ (2,∞].

By Proposition 5 (i), (a) is impossible. On the other hand (b) is contradicted by
Proposition 5 (ii) with, say, C = φ and D = 2. For the last case, Proposition 5 (iii)
gives a contradiction. ✷

3. When GDWN and Wythoff Nim Have the Same P-positions

Let us introduce some more notation. An ordered pair of positive integers belongs to
the setW if it is of the form (�φt�, �φ2t�), a Wythoff pair, or of the form (�φt�, �φ2t�),
a dual Wythoff pair, t ∈ N. Hence

W = {(1, 2), (2, 3), (3, 5), (4, 6), (4, 7), (5, 8), (6, 10), (7, 11), . . .}.

Notice that, for all t ∈ N, �φ2t�/�φt� < φ and �φ2t�/�φt� > φ.
The main result of this section is the following.

Theorem 6. Suppose that (p, q) �∈W. Then P(p, q) = P(WN) if 1 < q
p < φ. That

is, with a = a(p, q) and b = b(p, q), for all n ∈ N, an = �φn� and bn = �φ2n�.

Before proving this theorem we need to develop some facts from combinatorics
on Sturmian words. For some background and terminology on this subject we refer
to [14, Sections 1 and 2].

We are interested in the (infinite) Sturmian words s and s� on the alphabet {0, 1}
and the corresponding (non-Sturmian) ‘translates’ t and t� on {1, 2}. For all n ∈ N0,
the nth letter is

s(n) := �φ(n + 1)� − �φn� − �φ�,
s�(n) := �φ(n + 1)� − �φn� − �φ�,
t(n) := �φ(n + 1)� − �φn� = s(n) + 1
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and

t�(n) := �φ(n + 1)� − �φn� = s�(n) + 1

respectively.
Then s and t (s� and t�) are the lower (upper) mechanical words with slopes 1/φ

and φ, respectively, and intercept 0. An irrational mechanical word has irrational
slope. The characteristic word belonging to s and s� is c = s(1)s(2)s(3) . . .. Namely,
we have s(0) = 0, s�(0) = 1 and otherwise, for all n > 0, s(n) = s�(n) = 0 or
s(n) = s�(n) = 1. In fact, we have

s = 01011010110 . . .

and
s� = 11011010110 . . . .

Let x denote a finite word on {0, 1}. Then l(x) and h(x) denote the number of
letters and 1’s in x, respectively. Let α and β be two factors of a Sturmian word
w. Then w is balanced if l(α) = l(β) implies | h(α) − h(β) | ≤ 1. By [14, Section
2], both s and s� are balanced (aperiodic) words. We will also need the following
result from the same source.

Lemma 7. ([14]) Suppose two irrational mechanical words have the same slope.
Then their respective set of factors are identical.

We also use the following notation. Let x = x1x2 . . . xn be a factor of a mechani-
cal word on n letters. Then we define the sum of x as

�
x := x1 +x2 + . . .+xn. For

example the sum of 2121 equals 6. We let ξn(r) denote the unique n-letter prefix of
an infinite word r. Note that

�
ξn(t) =

�
ξn(s) + n and

�
ξn(t�) =

�
ξn(s�) + n,

for all n.

Lemma 8. Let x be any factor of s (or s�). Then
�

x =
�

ξl(x)(s) or
�

x =
�

ξl(x)(s�).

Proof. If two factors of s have the same length and the same height, then, since the
number of 1’s in the respective factors must be the same, their sums are identical.
Therefore, if h(x) = h(ξl(x)(s)), this implies

�
x =

�
ξl(x)(s).

Assume on the contrary that h(x) �= h(ξl(x)(s)). On the one hand, for all n,
h(ξn(s)) = h(ξn(s�)) − 1. On the other hand, the balanced condition implies that
if x is a factor of s with a given length, then h(x) takes the value of one of two
consecutive integers. It follows that h(x) = h(ξl(x)(s�)). But then, by the initial
observation, we are done.

The following proposition assures that for each pair in W, the P-positions of
GDWN are distinct from those of Wythoff Nim. An alternative proof appears in
[5].
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Proposition 9 ([5]). Let p, q ∈ N. Then (p, q) ∈ W if and only if there exists a
pair m,n ∈ N0 with m < n such that

(p, q) = (�φn� − �φm�, �φ2n� − �φ2m�).

Proof. Let (p, q) ∈ W. If (p, q) = (�rφ�, �rφ2�), for some r ∈ N, we may take
m = 0. If (p, q) = (�rφ� + 1, �rφ2� + 1), for some r ∈ N, then, since s and s�

are mechanical with the same slope, by Lemma 7, ξr(s�) is a factor of s. But
then, �rφ� + 1 =

�
ξr(t�) =

�
ξn(t) −

�
ξm(t) for some n − m = r. This gives

(p, q) = (�rφ�+ 1, �rφ�+ 1 + r) = (�nφ� − �mφ�, �nφ� − �m�+ n−m) = (�nφ� −
�mφ�, �φ2n� − �φ2m�). For the other direction, let (p, q) and m < n be as in
the proposition. Let x denote the factor of s which consists of the n − m last
letters in the prefix ξn(s). Then, by l(x) = n − m and Lemma 8, we may take
p =

�
ξl(x)(t) = �l(x)φ� or p =

�
ξl(x)(t�) = �l(x)φ� + 1. In either case, the

assumption gives q = p + l(x), and so (p, q) ∈W.

Proof of Theorem 6. We need to show that, for all n, (�φn�, �φ2n�) = (an, bn), where
a = a(p, q) and b = b(p, q) and where (p, q) �∈ W with 1 < p/q < φ. The problem
of, for each candidate N-position, finding a move of (p, q)GDWN to a candidate
P-position was resolved already in [15], namely it suffices to use the Wythoff Nim
type moves. In order to assure that no two P-positions can be connected by a move
it suffices to use Proposition 9. Namely, we proved, in particular, that there exist
integers 0 ≤ m < n such that (�φn�, �φ2n�) → (�φm�, �φ2m�) is a legal move of
(p, q)GDWN only if (p, q) ∈W.

Suppose there are integers 0 ≤ m < n such that (�φn�, �φ2n�) → (�φ2m�, �φm�)
is a legal move of (p, q)GDWN. Then (�φn� − �φ2m�, �φ2n� − �φm�) = (tp, tq) for
some t ∈ N. Hence

�φn� = tp + �φ2m�

and
�φ2n� = tq + �φm�.

Then φ < �φ2n�/�φn� = (tq + �φm�)/(tp + �φ2m�) < q/p since 0 ≤ �φm� ≤ �φ2m�
for all m. ✷

4. Experiments, Conjectures, and Figures

We conjecture a continuation of Theorem 1 if and only if (p, q) is a Wythoff pair or
a dual Wythoff pair, as defined in Section 3.
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Conjecture 10. Consider the sequences a and b as defined by (p, q)GDWN. If
(p, q) �∈W, then the limit

lim
n∈N

bn

an
(19)

exists and equals φ = 1+
√

5
2 . Otherwise, if (p, q) ∈W, the limit (19) does not exist.

In view of various experimental results, displayed in several figures later in this
section, we will next strengthen this conjecture. To this purpose we give a rigorous
definition of splitting sequences, introduced in Section 1. Let µ ∈ R with µ > 0.
A sequence of ordered pairs of positive integers ((xi, yi))i∈N µ-splits if there is an
α ∈ R such that,

• there are at most finitely many i’s for which yi/xi ∈ (α,α + µ),

• there are infinitely many i’s for which yi/xi ∈ [0,α]

• there are infinitely many i’s for which yi/xi ∈ [α + µ,∞).

We say that ((xi, yi))i∈N splits if there is a µ such that ((xi, yi))i∈N µ-splits. If
((xi, yi))i∈N splits we may define complementary sequences (li) and (ui) such that
for all sufficiently large i

yli/xli ∈ [0,α]

and
yui/xui ∈ [α + µ,∞).

As we have seen, the P-positions of Nim do not split, but those of Wythoff Nim
do. Indeed, the latter 1-splits (with α = φ−1). See also [13], where we demonstrate
a splitting of Wythoff Nim’s P-beams in a slightly different context. In that paper
the split is produced by a certain blocking maneuver (the previous player may block
off at most one Wythoff Nim type option at each stage of the game).

The experimental result shown in Figure 2 suggests that the upper P-beam of
(1, 2)GDWN splits precisely once in the following sense. We say that a sequence
of ordered pairs of positive integers ((xi, yi))i∈N splits twice if the following criteria
are satisfied: there are α,β, µ, ν ∈ R with µ, ν > 0 and β > α + µ such that,

• there are at most finitely many i’s for which yi/xi ∈ (α,α + µ) ∪ (β,β + ν),

• there are infinitely many i’s for which yi/xi ∈ [0,α],

• there are infinitely many i’s for which yi/xi ∈ [α + µ,β],

• there are infinitely many i’s for which yi/xi ∈ [β + ν,∞).

See also Section 5. The sequence ((xi, yi))i∈N splits precisely once if it splits once,
but not twice.
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Conjecture 11. The sequence of upper P-positions of (p, q)GDWN splits precisely
once if and only if (p, q) ∈W. Furthermore, if (p, q) = (1, 2) or (p, q) = (2, 3), then
there is a pair of increasing complementary sequences (li) and (ui) such that both
η = limi→∞

bli
ali

and γ = limi→∞
bui
aui

exist with real 1 < η < φ < γ ≤ 3. See also
Table 3 for some conjectured µ-splits.

We support our conjectures with data for several games (p, q)GDWN including
all games with p < q ≤ 9. By Section 3, it suffices to investigate the cases for which
q/p > φ. Thus, we have explored several thousands of the upper P-positions for the
20 games (p, q)GDWN, where

(p, q) ∈ {(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 4), (2, 5), (20)
(2, 6), (2, 7), (2, 8), (2, 9), (3, 6), (3, 7), (3, 8), (3, 9), (4, 8), (4, 9), (5, 9)}.

This set consists exclusively of non-W pairs. Hence, to support Conjectures 10 and
11, we need to show experimental results pointing at a convergence of bi/ai to φ.
Our question is: Given (p, q), is there a reasonably “small” N0 ∈ N such that

bi

ai
∈ [1.6175, 1.6185] for all i ∈ [N0, N0 + 2000]? (21)

For each (p, q) if we find such an N0 we stop the computation. Our simula-
tions provided a positive answer with N0 ≤ 10000 for all (p, q) as in (20), except
(1, 3), (2, 4), (3, 6), (5, 9). If we would have asked the same question, but with the
upper bound in (21) exchanged for 1.623, then the answer would have been positive,
with N0 = 15000, also for these four pairs. In Figure 5 we display the results for
the pair with slowest convergence in the test (20), namely (2, 4). In this figure we
also display the corresponding ratios for the game (7, 12)GDWN which also appear
to converge, but in an even slower rate.

We also support our conjectures via computations of initial ratios bi/ai for some
W-pairs in Figures 3, 4 and 6, namely

(p, q) ∈ {(1, 2), (2, 3), (3, 5), (4, 6), (4, 7), (5, 8), (6, 10), (7, 11)}.

In Table 3 we conjecture µ-splits for the corresponding upper P-positions. See also
Figures 3 and 4 for the games (1, 2)GDWN and (2, 3)GDWN.

Then, in Figures 7 and 8, we display some more exotic games. The game
(31, 52)GDWN passes the test in (21) with N0 = 5000, but (31, 51)GDWN seems
so to converge much slower. It does satisfy (21) for ≈ 99% of the ratios for N0 =
13000. On the other hand, in support of our conjectures, the games (31, 50)GDWN,
(32, 52)GDWN and (731, 1183)GDWN violate the test in (21) a lot, as far as we
have been able to compute.
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bn 0 2 5 7 10 17 14 19 18 20 27 33
an 0 1 3 4 6 8 9 11 12 13 16 21
δn 0 1 2 3 4 9 5 8 6 7 11 12
n 0 1 2 3 4 5 6 7 8 9 10 11

Table 2: Here (an, bn) represent P-positions of (2, 4)GDWN. Notice that (8, 13)−
(2, 1) = (3 × 2, 3 × 4), so that (8, 13) is the first Wythoff pair for which there is a
move to a P-position of (2, 4)GDWN. However, this type of connection of a Wythoff
pair to a P-position does not seem to enforce a later split. Our computations rather
suggest that the quotient bn/an converges to φ in accordance with Conjecture 10
and Figure 5.

(p, q) µ lower upper i� total
(1, 2) 0.73 1.49 2.22 844 31523
(2, 3) 0.29 1.42 1.71 346 21768
(3, 5) 0.17 1.57 1.74 118 20565
(4, 6) 0.10 1.49 1.59 504 22807
(4, 7) 0.12 1.64 1.76 734 22170
(5, 8) 0.06 1.58 1.64 167 21237
(6, 10) 0.07 1.62 1.69 910 20962
(7, 11) 0.06 1.56 1.61 570 21256

Table 3: We conjecture µ-splits for (p, q)GDWN corresponding to column 1. The
index i� indicates the greatest known index such that bi�/ai� lies in between the
‘lower’ and ‘upper’ bounds for the conjectured µ-split. The ‘ total’ column gives
the number of computed upper P-positions.

Remark 12. Returning to Proposition 5 for a moment, it is clear that (i) may
be adapted without any changes for general (p, q)’s. As it stands, however, the
combined ideas in (i), (ii) and (iii) do not seem to suffice to prove an actual split
of the upper P-positions even for the (1, 2) case. Therefore we have chosen not to
pursue a generalization of (ii) and (iii) at this point. An interesting observation in
support of Conjecture 11 is that (1, 2)GDWN splits if a positive proportion of the
ratios bi/ai is greater than 2; that is, if the set {i ∈ N | bi/ai > 2} has positive
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density. This follows from an argument similar to that of the proof of Proposition
5 (iii).

Remark 13. In [12] a restriction, called Maharaja Nim, of the game (1, 2)GDWN
is studied, where precisely the “Knight-type” moves (1, 2) and (2, 1) are adjoined to
the game of Wythoff Nim. In contrast to the main result of this paper, for Maharaja
Nim we prove that the P-positions lie on the same beams as in Wythoff Nim. In fact,
in [12], we prove that the quotients of the coordinates of the P-positions of Maharaja
Nim lie within a bounded distance from the lines φ−1x and φx respectively. In this
context it is interesting to observe that the only move on the generalized diagonal
(t, 2t) which belongs to W is (1, 2). Viewed in a slightly different perspective,
we have proved that, for (1, 2)GDWN, the non-W pairs on the diagonals (t, 2t)
and (2t, t), t > 1, contribute significantly in destroying the asymptotes of the P-
positions of Maharaja Nim. For yet another perspective of these type of questions,
see Remark 14, Table 2 and Figure 5 for the game (2, 4)GDWN.

Remark 14. For the main result in Section 4, since q/p < φ, we did not need to
consider the possibility of a connection between upper and ‘lower’ P-positions of
Wythoff Nim. On the other hand, whenever q/p > φ, by our simulations, it appears
that such interferences are common. See Table 2 for the first such connection for
the game (2, 4)GDWN. It would be interesting to know whether infinitely many
P-positions of (2, 4)GDWN are Wythoff pairs. In case the answer is positive, is
there an n0 ∈ N such that, for all y ≥ x ≥ n0, (x, y) is an upper P-position,
if and only it is a Wythoff pair? In this context it would also be interesting to
know whether each pair of integers (x, y) with 0 < x < y satisfies the equality
(tx, ty) = (�φm� − �φ2n�, �φ2m� − �φn�) infinitely often for some m,n, t ∈ N (and
m > n). These type of questions are of course relevant for any game (p, q)GDWN
satisfying q/p > φ.
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Figure 3: The upper figure illustrates the first≈ 32000 ratios bn/an for (1, 2)GDWN.
In support of Conjecture 11, there appear to exist two complementary sequences
u (lower left) and l (lower right) such that bui/aui → 2.248 . . . (roughly 40%) and
bli/ali → 1.478 . . . (roughly 60%), when i → ∞. (The x-axes in the lower figures
are relabeled corresponding to the new sequences.)
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Figure 4: The first ≈ 22000 ratios bn/an for (2, 3)GDWN. In support of Conjecture
11 there appears to exist a pair of complementary sequences u (lower left figure)
and l (lower right figure) such that bui/aui → 1.74 . . . (roughly 80%) and bli/ali →
1.408 . . . (roughly 20%). (The x-axes in the lower figures are relabeled corresponding
to the new sequences.)
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Figure 5: The two upper figures illustrate the conjectured convergence (Conjecture
10) of the ratio bn/an for games (p, q)GDWN, whenever the pair (p, q) �∈W. Here
we view (2, 4)GDWN and (7, 12)GDWN, respectively. The computations include
the first ≈ 32000 and ≈ 42000 upper P-positions, respectively. In each case, the
upper P-beams do not seem to split, rather bn/an → 1.618 . . .. But, clearly the P-
positions are perturbed as compared to the corresponding ratio of the coordinates
of the upper P-positions of Wythoff Nim, the lower figure.
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Figure 6: The figures illustrate the first ≈ 22000 ratios bn/an for (3, 5)GDWN,
(4, 6)GDWN, (4, 7)GDWN, (5, 8)GDWN, (6, 10)GDWN and (7, 11)GDWN, respec-
tively. Our data suggest that the upper P-positions split for all these games, but it
appears that the weaker form of our conjecture is more applicable for this case. For
example, for the game (4, 6)GDWN (top right) there seems to be a pair of comple-
mentary sequences u and l such that for large i, 1.60 . . . < bui/aui < 1.66 . . . and the
quotient is ‘drifting back and forth’ in this interval, but possibly bli/ali → 1.48 . . . as
i →∞. Also (4, 7)GDWN seems to split asymptotically, namely to a pair of comple-
mentary sequences u and l such that bli/ali is ‘drifting’ in the interval [1.59, 1.63]
for large i, but possibly bui/aui → 1.77 . . .. Notice that the three games on the
left-hand side correspond to Wythoff pairs, whereas those on the right-hand side
correspond to dual ditto.
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Figure 7: These figures illustrate the first ≈ 27000 ratios bn/an for (31, 50)GDWN,
(31, 51)GDWN, (31, 52)GDWN and (32, 52)GDWN respectively. Notice that
(31, 51) and (31, 52) are non-W pairs, but 52/31 > 1.677 > 51/31 > 1.645 > φ.
As in Figure 5, there is perturbation of the P-positions of Wythoff Nim for these
two games (more accentuated for (31, 51)GDWN).

Figure 8: The figure illustrates the first ≈ 33000 ratios bn/an for (731, 1183)GDWN.
The left-most figure seems to indicate a convergence to φ, but the close-up to the
right reveals the conjectured split. Namely (731, 1183) ∈W (a Wythoff pair).
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5. Some Further Experimental Results

At last, we provide some further motivation for a study of (generalizations of)
GDWN-games. It is purely experimental. Let SGDWN denote an extension of
GDWN, where S is some finite set of (p, q) pairs defining moves of the forms in
(1) and where a move is permitted along any of those diagonals. For example, if
S = {(1, 2), (2, 3)}, then all moves of the forms (t, 2t), (2t, t), (2t, 3t) and (3t, 2t) are
permitted in addition to the original Wythoff Nim type moves. The P-beams of
three such games are given in Figure 9. As a remark for future investigations, it is
easy to verify that an analog of Proposition 2 holds for these games, that is, the
‘new’ sequences a and b must be complementary.

Figure 9: The figures illustrate complete sets of P-positions of {(1, 2), (2, 3)}GDWN,
{(1, 2), (2, 3), (3, 5)}GDWN and {(1, 2), (2, 3), (3, 5), (5, 8)}GDWN for all x-
coordinates ≤ 50000 (which apparently gives y-coordinates ≤ 120000). Namely,
in Section 5 we generalize the GDWN games and permit moves along several gen-
eralized diagonals in one and the same game. A mysterious continuation of the
splitting of P-beams from Figure 2 seems to have emerged.
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