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2-player combinatorial games with perfect information

leads to theory of disjunctive sum of games leads somewhere else
\ /

Some games have mathematical appeal: Nim, Wythoff's Nim

nice closed formulas (Xor-addition, Beatty sequences) for
winning positions,

or at least a log-polynomial algorithm.
other games are thought to be harder: Chomp, Chess, Go.

3-row Chomp has geometry and can be analyzed via
techniques adapted from physics (renormalization)

Friedman and Landsberg (2007)

Some games hide in patterns of flowers and plants




COXETER, H. S. M. "The Golden Section, Phyllotaxis, and
Wythoff's Game." Scripta Mathematica 19 (1953). KAPPRAFF,
J., BLACKMORE, D. and ADAMSON, G. W. "Phyllotaxis as a

dynamical system: a study in number", in Symmetry of Plants

(eds. R. V. Jean and D. Barabe) (1997)

5-8 phyllotaxis in a pineapple Adamson’s Wythoftt wheel



Why Wythoff's game and self-organization?

Adamson’s wheel is related to phyllotaxis, the Zeckendort
maximal representation and to the P-positions of Wythotf Nim.
Moreover, the author’s write:

“... we describe Wythoffs game, which holds the key to
describing phyllotaxis as a dynamical system.”

Kappraff, Adamson, Blackmore



Impartial games on 2 heaps of tokens, last move wins

Ancient, also Bouton 1902
2-heap Nim: remove any number from exactly one of the heaps: who wins from (3,5)?

Ancient, also Wythoff 1907

Wythoff Nim: Nim or instead remove the same number from both heaps: who wins from (3,5)?

The classical Wythoff Nim's set of P-positions is

{(|no], |nd?]), (| nd?|, | né])} (W. A. Wythoff 1907), where
n runs over the nonnegative integers and ¢ = 1+T‘@ is the
golden ratio.

Larsson 2012, 2014

(p,q)-GDWN: Wythoff Nim, or instead remove a multiple of p from one heap and the same

multiple of g from the other

Theorem: (1,2) and (2,3)-GDWN split




Linear Nimhoff
with Friedman, Landsberg, Garrabrant, Phipps-Morgan
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Study data for some

sets in Linear Nimhoff. (a) R = {(1,0),(0,1)} (i.e., two-pile Nim); (b) R =
{(1,0),(1,1),(0,1)} (i.e., Wythoff), (c) R = {(1 O) (3,2),(1,1),(0,1)}; (d)
R ({101 1, 2,9, (1.3, 0, D}; () R {10}, 1. B, (12 6, D) 6
R ={(1,0),(1,1),(1,2),(1,8),(0,1)}

There is a lot of geometry in these games. What is a
reasonable explanation of the observed behavior?



Losing positions (P-positions) for the current player
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Wythoff Nim

Assumption:
‘forbidden
regions” no
P-position

between the

P-lines,
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all
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The game
{(1 ,2),(2,3),(3,5),(5,8)}—GDWN

Computations

to 50000 for
GDWN has many games
symmetric rules, confirm
and hence hypothesis,
symmetric i P-lines are
posItions “splitting”,
and between
One rule fills them a filling
each / g property

region with N-
positions



(3,5)-GDWN

One rule per picture, black lines/regions are parents to P-
positions (N-positions) for this rule

/4

-

diagonal
Wythoff-type (3,5)-rule
rule

horizontal Nim
rule



The starting pomnt of our analysis 1s a sharpening of the empirical ob-
servation of forbidden regions, namely that for each forbidden region, there
exists a single rule r € R by which it 1s possible to move from any point in
that forbidden region to a P-position; 1n other words, all points within a given
forbidden region are parents of P-positions under the same rule r (although
they may also be parents under other rules as well).

C', is the set of all equivalence classes (lines) given by the rule r.

Proposition: given a rule set R, consider a forbidden region F associated
with a particular rule »r € R. We claim that parents under the rule r € R
fill this forbidden region 1f and only if each set in C, contains exactly one
P-position.

This result implies an important density property.



Computing the fraction f;,; of P-positions contributed by a single P-line,
for a given rule T
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slope of r; = b;/a;

density of P-line j is A; fii=
—

slope of P-line j is m;



The n+1 rules are ordered by increasing slope

he proposition implies a density property:

positive y-intercept yields, for fixed rule J,

n A .

N

=i mjaz- — bi

Positive x-intercept yields

= 1.

i—1 \

>

J
=1 777,]'0.2'



Altogether
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since each Nim rule I1s excluded from one of the sets of
eqguations



But this is not the whole truth, and after all, the reasoning
IS built on a non-rigorous method adapted from physics

The slopes of the upper P-beams of (p,q)-GDWN,

many (p,q), show fluctuations far beyond the
assumption of uniform distribution




Some P-lines are more interesting
than a uniform distribution

The till rule property appears to hold tor

(3,5)-GDWN, but there is also some quasi

log-periodic pattern... the P-lines are not
ines, rather beams, P-beams




Variations to the upper slopes of (3,5)-GDWN
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Figure 5: Left: P-positions of (3,5)GDWN for z < 32600, y < 32600. Right:
P-positions of (3,5)GDWN for z < 47800, y < 47800; by a =~ 1.478 scaling

we obtaln geometric invariance of P-positions.



The colors represent different numbers of P-positions as options

The
system
self-
organizes
INto
visibly
distinct
regions,
.e. more
geometry




Distorted (3,5)-GDWN

(0,1) is forced P-position  (0,3) is forced P-position

s (p,q)-GDWN stable to distortions?

Landsberg & Friedman: Chomp is, Nim is not (but scale invariance holds either way)



My computer does not open color pictures of 100000*100000 pixels, so instead |
ran the code showing just the P-beams, and the familiar pattern begins to reappear

20000720000 1000007100000

Each P-position is magnified to 10*10 pixels or more to be visible



R={(3,2)(2,1),(1,1),(0,1),(1,0)}: no fluctuation creating
additional geometry for non symmetric games

Attempted conjecture: Scale invariant log-quasi-periodic
fluctuations appear for Linear Nimhoff it and only if it is a (p,q)-
GDWN game with (p,q) a Wythoft pair, or (p-1,9-1) a Wythoft
pair, except for (p,q)=(1,2) or (2,3), and the fluctuations are not
sensitive to small perturbations of P-positions.




(3,5)-GDWN with adjoined (4,7) move -> Linear Nimhoff: no fluctuations, but a new P-line
and shifted mean slopes of the old ones. We have a density argument for when a new P-
line appears, given an adjoined rule. But we are not sure if we can use it for games with

fluctuations: here it seems OK.




Sometimes fluctuations remain, even though a new P-line appears: (3,5)-GDWN with adjoined
(5,8) move -> Linear Nimhoff: fluctuations remain, but there is also a hint of a new dashed P-
line between the upper P-beams, so the conjecture needs some modification still...

/ /




Equations for (p,q)-GDWN

In general for (p,q)-GDWN, it is convenient to note that m; = 1/my,
mg = 1/mg, m1 = A\1/A\4 and that mo = Ag9/A3. Thus, to compute the slopes,
1s suffices to solve the system

I =AM+ X+ A3+ Ay

At =Dp— qA\i/ g

1 = XMA1/ (A1 — A1) + A2A3/ (A3 — Ag);

1 = AoA3/(gh2 — pA3) + AaA3/(gA3s — pA2) + A1 A4/ (gA1 — pA1).



Variations to the upper slopes of (4,6)-GDWN
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The upper P-beam
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Embryonic development of a P-beam



A cellular automaton for
blocking queen games

with Neary and Cook

...more structure to the game k-Blocking Wythoff Nim
Larsson 2011
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The terminal position is the upper left corner. Two of the
queen’s in total 17 move options have been blocked off
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The queen can move to a non-blocked position, say (5,1).
The pawns get removed



k=5, the fifth move attempt cannot be blocked

0123456738910
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Suppose that the previous player is allowed to block at most
four positions. Find your winning configuration of pawns!
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Correct!

Well done!
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All terminal palaces for k = 5. From each such palace the
previous player can block off all moves
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The terminal positions and the next level of palace positions,
those who see only terminal palaces.



The palaces for k =5, 1000 x 1000 positions



The palace numbers for k = 5 reveal more structure




A color coding of palace numbers. The colors represent the
number of winning moves available (ignoring blocking) from
each position for the blocking parameter k = 5.

P-positions (the previous player wins)

0: Dark Brown, 1: Dark Olive, 2: Olive, 3: Light Olive,
4: Yellow,

N-positions (the next player wins)
5: Black, 6: Blue, 7: Indigo.



0123456738910

 —
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This color coding shows that you will win, since the opponent
will only be able to move to black palace numbers!



k=100 k=1000




Fig. 4. The seven self-organized (large k) regions for blocking queen games: (1) the
hood (2) an épaulette (3) the fabric (4) the outer space (5) an arm (6) the warp (7)
the inner sector. Some triples of regions define junctions and some pairs define borders:
i.e. (1,2,3) the nose (1,2,5) a shoulder (3,5,6) an armpit (3,6,7) the prism (1,2) a casing
(2,5) a hem (2,3) a rift (3,6) a fray (4,5) a skin.



The cellular automaton for k-Blocking Wythott Nim

d

AT
h1—> a b 3-2
ho— [c|d|e 9211
hg —— fla 1

3 3 3
at+e+f = Z'vi - Zdi + Zhi —3k=0b+c+g

i=1 i=1 1=1

g=a—b—c+e+ f+p.

p is the sum of green cells that
correspond to blue cell’s with a negative value



Theorem 1. The k-Blocking Wythoff Nim position (z,y) is a P-position if and
only if the CA given in Figure 2 gives a negative value at that position, when the
CA 1is started from an initial condition defined by

ke z<0andy<0
CA(z,y)=¢ 0 2z<0andy=0
0 2=20andy<0



Difference between k=499 and k=500

Difference between k=497 and k=500




There are only three possible patterns of the ‘fabric’: 0



There are only three possible patterns of the ‘fabric’: 1



There are only three possible patterns of the ‘fabric’: 2



A different color map highlights some interesting behavior

Meta-gliders in the fabric of game 3999



Fig. 9. Skin pattern. The diagonal black stripe crossing the picture from the upper left
to the lower right separates the skin (solid yellow/olive stripe) above it from the arm
below it. A blue vertical stripe is emitted by the skin once per period, in this case once
every 34 columns. The period is always a Fibonacci number. This picture shows the

case k = 100, in the region (10600 + 100, 4050 & 50).



Kari and Szabados 2015

s(2,7) = (@i +3)] — [#(1)] — [9(3)]




Fig. 7. Game 40003: A prism and its light beam. The slightly higher palace numbers
near the main diagonal can give the impression of a beam of light being emitted by
the prism. When the two fraying edges of the fabric meet at the prism, such higher
palace numbers are often produced. If viewing this document electronically, zoom in
for detail.



