Impartial games on random graphs

Urban Larsson,
joint work with Johan Wästlund

Chalmers and University of Gothenburg, Sweden

October 11 2009
Table of contents

Undirected Vertex Geography

The Erdös-Rényi model

The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG

A blocking maneuver: k-blocking UVG
The probability of a non-losing strategy

Idea:
Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.
The probability of a non-losing strategy

Idea:
Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:
Play a coin-sliding game on this random graph.
The probability of a non-losing strategy

Idea:
Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:
Play a coin-sliding game on this random graph.

Questions:
The probability of a non-losing strategy

Idea:
Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:
Play a coin-sliding game on this random graph.

Questions:
- What is the probability of a second player win?
The probability of a non-losing strategy

Idea:
Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:
Play a coin-sliding game on this random graph.

Questions:
- What is the probability of a second player win?
- What is the probability of a draw?
The probability of non-loss and win of GWUG(\(\lambda\))
The probability of non-loss and win of GWUG(\(\lambda\))
The Impartial game of Geography

- Undirected Vertex Geography
- The Erdős-Rényi model
- The Galton Watson Branching Process
- The game of Galton Watson UVG, GWUVG
- A blocking maneuver: k-blocking UVG
The Impartial game of Geography

- Geography, a well-known 2-player children game.
The Impartial game of Geography

- Geography, a well-known 2-player children game.
- Undirected Vertex Geography, UVG, a coin-sliding game.
The Impartial game of Geography

- Geography, a well-known 2-player children game.
- Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph $G = G(V, E)$ and a starting node $\nu \in V$.
The Impartial game of Geography

- Geography, a well-known 2-player children game.
- Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph \(G = G(V, E) \) and a starting node \(\nu \in V \).
- Two players, A and B, slide a coin alternately along the edges of \(G \).
The Impartial game of Geography

- Geography, a well-known 2-player children game.
- Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph $G = G(V, E)$ and a starting node $\nu \in V$.
- Two players, A and B, slide a coin alternately along the edges of G.
- Whenever a player slides the coin from the vertex x to one of its neighbours, x is erased from the game board.
The Impartial game of Geography

- Geography, a well-known 2-player children game.
- Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph $G = G(V, E)$ and a starting node $\nu \in V$.
- Two players, A and B, slide a coin alternately along the edges of G.
- Whenever a player slides the coin from the vertex x to one of its neighbours, x is erased from the game board.
- together with all its incident edges.
The move rules
The possibility of a draw game

We play normal play. A player who cannot move loses.
The possibility of a draw game

We play normal play. A player who cannot move loses.

- In the infinite case, if none of the players can force a win, the game is declared a draw.
The possibility of a draw game

We play normal play. A player who cannot move loses.

▶ In the infinite case, if none of the players can force a win, the game is declared a **draw**.

▶ A non-losing strategy: Move along the edges in a **maximum matching**.
The possibility of a draw game

We play normal play. A player who cannot move loses.

- In the infinite case, if none of the players can force a win, the game is declared a **draw**.
- A non-losing strategy: Move along the edges in a **maximum matching**.
- If G is finite, there is always a winner.
The possibility of a draw game

We play normal play. A player who cannot move loses.

- In the infinite case, if none of the players can force a win, the game is declared a draw.
- A non-losing strategy: Move along the edges in a maximum matching.
- If G is finite, there is always a winner.
- Game complexity is polynomial.
The possibility of a draw game

We play normal play. A player who cannot move loses.

- In the infinite case, if none of the players can force a win, the game is declared a draw.
- A non-losing strategy: Move along the edges in a maximum matching.
- If G is finite, there is always a winner.
- Game complexity is polynomial.
The player not moving from ν wins
The player moving from ν wins
The player moving from ν wins
The Erdös-Rényi (ER) model

Let $n \in \mathbb{N}$ and $p \in [0, 1]$. Let $G(n, p)$ denote an ER-random graph on n nodes where an edge $\{x, y\}$ is present with probability p.
The Erdös-Rényi (ER) model

Let $n \in \mathbb{N}$ and $p \in [0, 1]$. Let $G(n, p)$ denote an ER-random graph on n nodes where an edge $\{x, y\}$ is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, D.

The expectation of D is $(n-1)p$. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely $G(n, p)$ contains one giant component of size $\Theta(n)$.

If $\lambda < 1$, the size of the largest connected component is $\Theta(\log(n))$.

The number of small cycles in a small component is small. Thus, locally, the graph resembles a Branching process.
The Erdős-Rényi (ER) model

Let \(n \in \mathbb{N} \) and \(p \in [0, 1] \). Let \(G(n, p) \) denote an ER-random graph on \(n \) nodes where an edge \(\{x, y\} \) is present with probability \(p \).

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, \(D \). The expectation of \(D \) is \((n - 1)p\).
The Erdös-Rényi (ER) model

Let $n \in \mathbb{N}$ and $p \in [0, 1]$. Let $G(n, p)$ denote an ER-random graph on n nodes where an edge $\{x, y\}$ is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, D. The expectation of D is $(n - 1)p$. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n - 1)p$ and so
The Erdös-Rényi (ER) model

Let $n \in \mathbb{N}$ and $p \in [0, 1]$. Let $G(n, p)$ denote an ER-random graph on n nodes where an edge $\{x, y\}$ is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, D. The expectation of D is $(n - 1)p$. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n - 1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.
The Erdős-Rényi (ER) model

Let $n \in \mathbb{N}$ and $p \in [0, 1]$. Let $G(n, p)$ denote an ER-random graph on n nodes where an edge $\{x, y\}$ is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, D. The expectation of D is $(n - 1)p$. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n - 1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely $G(n, p)$ contains one giant component of size $\Theta(n)$.
The Erdős-Rényi (ER) model

Let $n \in \mathbb{N}$ and $p \in [0, 1]$. Let $G(n, p)$ denote an ER-random graph on n nodes where an edge $\{x, y\}$ is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, D. The expectation of D is $(n-1)p$. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely $G(n, p)$ contains one giant component of size $\Theta(n)$. If $\lambda < 1$, the size of the largest connected component is $\Theta(\log(n))$.
The Erdös-Rényi (ER) model

Let $n \in \mathbb{N}$ and $p \in [0, 1]$. Let $G(n, p)$ denote an ER-random graph on n nodes where an edge $\{x, y\}$ is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, D. The expectation of D is $(n - 1)p$. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n - 1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely $G(n, p)$ contains one giant component of size $\Theta(n)$. If $\lambda < 1$, the size of the largest connected component is $\Theta(\log(n))$. The number of small cycles in a small component is small.
The Erdős-Rényi (ER) model

Let \(n \in \mathbb{N} \) and \(p \in [0, 1] \). Let \(G(n, p) \) denote an ER-random graph on \(n \) nodes where an edge \(\{x, y\} \) is present with probability \(p \).

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variable, \(D \). The expectation of \(D \) is \((n - 1)p \). Keeping the expected degree constant as \(n \to \infty \), \(D \) may be approximated with a Poissonian random variable with \(\lambda = (n - 1)p \) and so \(\Pr(D = k) = \frac{\lambda^k}{k!} e^{-\lambda} \).

Threshold at \(\lambda = 1 \)

If \(\lambda > 1 \), almost surely \(G(n, p) \) contains one giant component of size \(\Theta(n) \). If \(\lambda < 1 \), the size of the largest connected component is \(\Theta(\log(n)) \). The number of small cycles in a small component is small. Thus, locally, the graph resembles a Branching process.
An instance of $G(100,0.01)$
A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distribution. Put $a_k = \Pr(D = k)$.

Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.

$f(x)$ is monotone increasing.

The expected number of children per node is $f'(1)$.

If $f'(1) > 1$, the fixpoint equation $f(x) = x$ has two solutions.

$\Pr(\text{a branching process dies at generation 0}) = a_0$.

$\Pr(\text{a branching process has at most } k \text{ generations}) = f_k(a_0)$.

The probability of extinction is $f_\infty(a_0)$.
A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distribution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distribution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- $f(x)$ is monotone increasing.
A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distribution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- $f(x)$ is monotone increasing.
- The expected number of children per node is $f'(1)$.
A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distribution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- $f(x)$ is monotone increasing.
- The expected number of children per node is $f'(1)$.
- If $f'(1) > 1$, the fixpoint equation $f(x) = x$ has two solutions.
Start with a single node \(\nu \) at generation 0 and some fixed offspring distribution. Put \(a_k = \Pr(D = k) \).

- Generating function \(f(x) = \sum_{k=1}^{\infty} a_k x^k \).
- \(f(x) \) is monotone increasing.
- The expected number of children per node is \(f'(1) \).
- If \(f'(1) > 1 \), the fixpoint equation \(f(x) = x \) has two solutions.
- \(\Pr(\text{a branching process dies at generation 0}) = a_0 \).
A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distribution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- $f(x)$ is monotone increasing.
- The expected number of children per node is $f'(1)$.
- If $f'(1) > 1$, the fixpoint equation $f(x) = x$ has two solutions.
- $\Pr(\text{a branching process dies at generation 0}) = a_0$.
- $\Pr(\text{a branching process has at most } k \text{ generations}) = f^k(a_0)$.

Urban Larsson, joint work with Johan Wästlund
A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distribution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- $f(x)$ is monotone increasing.
- The expected number of children per node is $f'(1)$.
- If $f'(1) > 1$, the fixpoint equation $f(x) = x$ has two solutions.
- $\Pr(\text{a branching process dies at generation 0}) = a_0$.
- $\Pr(\text{a branching process has at most } k \text{ generations}) = f^k(a_0)$.
- The probability of extinction is $f^\infty(a_0)$.
Survival and extinction

If $0 \leq f'(1) \leq 1$, the probability of extinction is 1.

If $f'(1) > 1$ there is a positive probability of survival, say $1 - \alpha$.

This probability is given by the least positive solution to the fixpoint equation: $f(\alpha) = \alpha$.
Survival and extinction

- If $0 \leq f'(1) \leq 1$, the probability of extinction is 1.
If $0 \leq f'(1) \leq 1$, the probability of extinction is 1.

If $f'(1) > 1$ there is a positive probability of survival, say $1 - \alpha$.

Survival and extinction
Survival and extinction

- If $0 \leq f'(1) \leq 1$, the probability of extinction is 1.
- If $f'(1) > 1$ there is a positive probability of survival, say $1 - \alpha$.
- This probability is given by the least positive solution to the fixpoint equation: $f(\alpha) = \alpha$.
Outline
Undirected Vertex Geography
The Erdős-Rényi model
The Galton Watson Branching Process
The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

$f_{1.7}(x)$
Iterating $x_{k+1} = f_{1.7}(x_k)$
Here a_k is given by a Poisson distribution with some fixed parameter λ, so that
The Poisson distribution

Here a_k is given by a Poisson distribution with some fixed parameter λ, so that

$$f(x) = f_\lambda(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda(1-x)},$$

and
The Poisson distribution

Here a_k is given by a Poisson distribution with some fixed parameter λ, so that

$$f(x) = f_\lambda(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda(1-x)},$$

and

$$f'(x) = \lambda e^{-\lambda(1-x)}.$$

Putting $x_0 = a_0 > 0$ we may evaluate $\alpha = \lim_{k \to \infty} x_k$, where
The Poisson distribution

Here a_k is given by a Poisson distribution with some fixed parameter λ, so that

$$f(x) = f_\lambda(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda(1-x)},$$

and

$$f'(x) = \lambda e^{-\lambda(1-x)}.$$

Putting $x_0 = a_0 > 0$ we may evaluate $\alpha = \lim_{k \to \infty} x_k$, where

$$x_{k+1} = f(x_k) = e^{-\lambda(1-x_k)}.$$
The previous player is the player not in turn to move. Put
The previous player is the player not in turn to move. Put

\[p = \Pr(\text{The previous player wins}), \]
The game of GWUVG

The previous player is the player not in turn to move. Put

- \(p = \Pr(\text{The previous player wins}) \),
- \(q = \Pr(\text{The previous player does not lose}) \),

\[\lim_{k \to \infty} p_k \to p \quad \text{and} \quad \lim_{k \to \infty} q_k \to q. \]
The previous player is the player not in turn to move. Put

- \(p = \Pr(\text{The previous player wins}) \),
- \(q = \Pr(\text{The previous player does not lose}) \),
- \(p_k = \Pr(\text{The previous player wins within } k \text{ generations}) \).
The previous player is the player not in turn to move. Put

- $p = \Pr(\text{The previous player wins})$,
- $q = \Pr(\text{The previous player does not lose})$,
- $p_k = \Pr(\text{The previous player wins within } k \text{ generations})$,
- $q_k = \Pr(\text{The previous player does not lose within } k \text{ generations})$,

Then $\lim p_k \rightarrow p$ and $\lim q_k \rightarrow q$.

Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs
The previous player is the player not in turn to move. Put

- $p = \Pr(\text{The previous player wins})$,
- $q = \Pr(\text{The previous player does not lose})$,
- $p_k = \Pr(\text{The previous player wins within k generations})$,
- $q_k = \Pr(\text{The previous player does not lose within k generations})$,
- Then $\lim p_k \to p$ and $\lim q_k \to q$.
The initial conditions

The previous player
The initial conditions

The previous player

- cannot win before game has started: $p_0 = 0$.
The initial conditions

- The previous player cannot win before game has started: $p_0 = 0$.
- The previous player cannot lose before game has started $q_0 = 1$.
The initial conditions

The previous player

- cannot win before game has started: $p_0 = 0$.
- cannot lose before game has started $q_0 = 1$.
- wins if there is no offspring: $p_1 = a_0 = e^{-\lambda}$.
The initial conditions

The previous player

- cannot win before game has started: \(p_0 = 0 \).
- cannot lose before game has started \(q_0 = 1 \).
- wins if there is no offspring: \(p_1 = a_0 = e^{-\lambda} \).
- cannot lose in the first generation since it is the first players turn: \(q_1 = q_0 = 1 \).
Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

\[p_{k+1} = \Pr(\text{Player B wins within the first } k+1 \text{ generations}) = \Pr(\text{Player A loses within the next } k \text{ generations}) = \Pr(\text{From each first generation child, the previous player loses within the next } k \text{ generations}) = \sum_{i=0}^{\infty} a_i (1 - q_i k)^i = f(1 - qk). \]
Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

\[p_{k+1} = \Pr(\text{Player B wins within the first } k + 1 \text{ generations}) \]
Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

\[p_{k+1} = \Pr(\text{Player B wins within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A loses within the next } k \text{ generations}) \]
Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

\[
p_{k+1} = \Pr(\text{Player B wins within the first } k+1 \text{ generations})
= \Pr(\text{Player A loses within the next } k \text{ generations})
= \Pr(\text{From each first generation child, the previous player loses within the next } k \text{ generations})
\]
Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

\[p_{k+1} = \Pr(\text{Player B wins within the first } k + 1 \text{ generations}) = \Pr(\text{Player A loses within the next } k \text{ generations}) = \Pr(\text{From each first generation child, the previous player loses within the next } k \text{ generations}) = \sum_{i=0}^{\infty} a_i (1 - q_k)^i = f(1 - q_k). \]
Looking below the first generation

Similarly:
Looking below the first generation

Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]
Looking below the first generation

Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A does not win within the next } k \text{ generations}) \]
Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]

\[= \Pr(\text{Player A does not win within the next } k \text{ generations}) \]

\[= \Pr(\text{From each first generation child, the previous player does not win within the next } k \text{ generations}) \]
Looking below the first generation

Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A does not win within the next } k \text{ generations}) \]
\[= \Pr(\text{From each first generation child, the previous player does not win within the next } k \text{ generations}) \]
\[= \sum_{i=0}^{\infty} a_i (1 - p_k)^i = f(1 - p_k) = \]
x and e^{-2x}
Iterating $p_k = e^{-2q_k}$ and $q_k = e^{-2p_k}$
Outline
Undirected Vertex Geography
The Erdős-Rényi model
The Galton Watson Branching Process
The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

x and $e^{-3.5x}$
Iterating $p_k = e^{-3.5q_k}$ and $q_k = e^{-3.5p_k}$
One-dimensional non-linear dynamics

Since $|f'_2(\alpha)| < 1$, the first fixpoint is an attractor.
One-dimensional non-linear dynamics

- Since $|f_2'(\alpha)| < 1$, the first fixpoint is an attractor.
- The second fixpoint is repellent, by $|f_{3.5}'(\alpha)| > 1$.

Urban Larsson, joint work with Johan Wästlund
Impartial games on random graphs
One-dimensional non-linear dynamics

- Since $|f'_2(\alpha)| < 1$, the first fixpoint is an attractor.
- The second fixpoint is repellent, by $|f'_{3.5}(\alpha)| > 1$.
- But it is an attractor of period 2:
Outline
Undirected Vertex Geography
The Erdős-Rényi model
The Galton Watson Branching Process
The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

x and $e^{-3.5e^{-3.5x}}$

This fixpoint is an attractor
since $|f(x^*)| < 1$

This fixpoint is no attractor
since $|f(x^*)| > 1$
A bifurcation at $\lambda = e$
A game theoretical interpretation

First player wins

Second player wins

Draw

Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs
\[p < q \text{ if } \lambda > e \]

- \(q = 0.82 \)
- \(s = 0.24 \)
- \(p = 0.06 \)
- \(s = 3.5 \)
\[p = q \text{ if } \lambda \leq e \]
Why a bifurcation at $\lambda = e$?

Theorem

*The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.***
Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put $g(x) = f(1 - x)$. By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \leq 1$. We get
Why a bifurcation at $\lambda = e$?

Theorem
*The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put $g(x) = f(1 - x)$. By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \leq 1$. We get

- $g(x) = e^{-\lambda x};$
Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put $g(x) = f(1 - x)$. By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \leq 1$. We get

- $g(x) = e^{-\lambda x}$;
- $g'(x) = -\lambda e^{-\lambda x}$;
Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put $g(x) = f(1 - x)$. By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \leq 1$. We get

- $g(x) = e^{-\lambda x}$;
- $g'(x) = -\lambda e^{-\lambda x}$;
- $g'(x) < 0$. So α is an attractor if and only if $g'(\alpha) \geq -1$;
Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put $g(x) = f(1 - x)$. By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \leq 1$. We get

- $g(x) = e^{-\lambda x}$;
- $g'(x) = -\lambda e^{-\lambda x}$;
- For all x, $g'(x) < 0$. So α is an attractor if and only if $g'(\alpha) \geq -1$;
- But $g'(\alpha) = -\lambda e^{-\lambda \alpha} = -\lambda \alpha \geq -1$;
Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put $g(x) = f(1 - x)$. By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \leq 1$. We get

- $g(x) = e^{-\lambda x}$;
- $g'(x) = -\lambda e^{-\lambda x}$;
- For all x, $g'(x) < 0$. So α is an attractor if and only if $g'(\alpha) \geq -1$;
- But $g'(\alpha) = -\lambda e^{-\lambda \alpha} = -\lambda \alpha \geq -1$;
- This gives $\lambda \leq e$. At the critical intensity the probability for a second player win is $\alpha = \frac{1}{e}$.

Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs
When does the first player win?

The intensity $s = e$ maximizes the probability $1 - p$ that the first player has a winning strategy.

$1 - p = 1 - e^t$
The expected size of a maximum matching in $G(n, p)$

The Karp-Sipser (1981) leaf removal algorithm on $G(n, p)$ gives a core that covers a finite fraction of all the vertices if

$$\lambda = (n - 1)p > e.$$
The expected size of a maximum matching in $G(n, p)$

The Karp-Sipser (1981) leaf removal algorithm on $G(n, p)$ gives a core that covers a finite fraction of all the vertices if $\lambda = (n - 1)p > e$. If $\lambda \leq e$, asymptotically it does not cover any vertices.
The expected size of a maximum matching in $G(n, p)$

The Karp-Sipser (1981) leaf removal algorithm on $G(n, p)$ gives a core that covers a finite fraction of all the vertices if $\lambda = (n - 1)p > e$. If $\lambda \leq e$, asymptotically it does not cover any vertices. For large n, if the core is large all its nodes can be matched.
Suppose we play a game of UVG on a finite graph with n nodes. Then, if no player can force a win within $\sqrt{\log(n)}$ moves, we define the outcome of the game as a pseudo-draw.
Suppose we play a game of UVG on a finite graph with n nodes. Then, if no player can force a win within $\sqrt{\log(n)}$ moves, we define the outcome of the game as a pseudo-draw.

Theorem

*The probability for a pseudo-draw of UVG on $G(n, p)$ is 0 if and only if $\lambda \leq e$.***
A blocking maneuver

Definition
Let $k \in \mathbb{N}$. The rules of k-blocking UVG are as UVG with the following twist: Before the next player moves, the previous player may block off at most $k - 1$ edges and declare them as non-slidable.
A blocking maneuver

Definition
Let $k \in \mathbb{N}$. The rules of k-blocking UVG are as UVG with the following twist: Before the next player moves, the previous player may block off at most $k - 1$ edges and declare them as non-slidable.

So 1-blocking UVG = UVG.
Looking below the first generation
Looking below the first generation

\[p_{k+1} = \Pr(\text{Player B wins within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A loses within the next } k \text{ generations}) \]
Looking below the first generation

\[p_{k+1} = \Pr(\text{Player B wins within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A loses within the next } k \text{ generations}) \]
\[= \Pr(\text{From at most one first generation child, the previous player wins within the next } k \text{ generations}) \]
Looking below the first generation

\[p_{k+1} = \Pr(\text{Player B wins within the first } k+1 \text{ generations}) \]
\[= \Pr(\text{Player A loses within the next } k \text{ generations}) \]
\[= \Pr(\text{From at most one first generation child, the previous player wins within the next } k \text{ generations}) \]
\[= \sum_{i=0}^{\infty} a_i ((1 - q_k)^i + iq_k(1 - q_k)^{k-1}). \]
Looking below the first generation

\[p_{k+1} = \Pr(\text{Player B wins within the first } k+1 \text{ generations}) \]
\[= \Pr(\text{Player A loses within the next } k \text{ generations}) \]
\[= \Pr(\text{From at most one first generation child, the previous player wins within the next } k \text{ generations}) \]
\[= \sum_{i=0}^{\infty} a_i((1 - q_k)^i + iq_k(1 - q_k)^{k-1}). \]
\[= f(1 - q_k) + q_k f'(1 - q_k) \]
Looking below the first generation

- \(p_{k+1} = \Pr(\text{Player B wins within the first } k+1 \text{ generations}) \)
- \(= \Pr(\text{Player A loses within the next } k \text{ generations}) \)
- \(= \Pr(\text{From at most one first generation child, the previous player wins within the next } k \text{ generations}) \)
- \(= \sum_{i=0}^{\infty} a_i((1 - q)^i + iq(1 - q)^{k-1}). \)
- \(= f(1 - q_k) + q_k f'(1 - q_k) \)
- \(\rightarrow f(1 - q) + qf'(1 - q). \)
Looking below the first generation

Similarly:
Looking below the first generation

Similarly:

- $q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations})$
- $= \Pr(\text{Player A does not win within the next } k \text{ generations})$
Looking below the first generation

Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A does not win within the next } k \text{ generations}) \]
\[= \Pr(\text{From at most one first generation child, the previous player does not lose within the next } k \text{ generations}) \]
Looking below the first generation

Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A does not win within the next } k \text{ generations}) \]
\[= \Pr(\text{From at most one first generation child, the previous player does not lose within the next } k \text{ generations}) \]
\[= \sum_{i=0}^{\infty} a_i (1 - p_k)^i + ip_k (1 - p_k)^{k-1} \]
Looking below the first generation

Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A does not win within the next } k \text{ generations}) \]
\[= \Pr(\text{From at most one first generation child, the previous player does not lose within the next } k \text{ generations}) \]
\[= \sum_{i=0}^{\infty} a_i((1 - p_k)^i + ip_k(1 - p_k)^{k-1}) \]
\[= f(1 - p_k) + p_k f'(1 - p_k) \]
Looking below the first generation

Similarly:

\[q_{k+1} = \Pr(\text{Player B does not lose within the first } k + 1 \text{ generations}) \]
\[= \Pr(\text{Player A does not win within the next } k \text{ generations}) \]
\[= \Pr(\text{From at most one first generation child, the previous player does not lose within the next } k \text{ generations}) \]
\[= \sum_{i=0}^{\infty} a_i((1 - p_k)^i + ip_k(1 - p_k)^{k-1}) \]
\[= f(1 - p_k) + p_k f'(1 - p_k) \]
\[\rightarrow f(1 - p) + pf'(1 - p). \]
Hence, for 2-blocking UVG, if a_i is Poissonian, we get:

$$q = (1 + \lambda p)e^{-\lambda p}$$

and

$$p = (1 + \lambda q)e^{-\lambda q}$$

and so for this game the critical intensity $\lambda_0 = \frac{e\phi}{\phi}$, where $\phi = \frac{1+\sqrt{5}}{2}$.
Hence, for 2-blocking UVG, if a_i is Poissonian, we get:

$$q = (1 + \lambda p)e^{-\lambda p}$$

and

$$p = (1 + \lambda q)e^{-\lambda q}$$

and so for this game the critical intensity $\lambda_0 = \frac{e^\phi}{\phi}$, where $\phi = \frac{1+\sqrt{5}}{2}$. At this intensity and below, the probability for a draw is 0. The probability for a player B win at this intensity is $\frac{\phi^2}{e^\phi}$.
In general

Let \(k \in \mathbb{N} \). We summarize a generalization
In general

Let $k \in \mathbb{N}$. We summarize a generalization

- A maximal partial k-Factor, F, provides a non-losing strategy for k-UVG on a rooted tree;
In general

Let $k \in \mathbb{N}$. We summarize a generalization

- A maximal partial k-Factor, F, provides a non-losing strategy for k-UVG on a rooted tree;
- A non-losing strategy is to slide along edges in F.

Urban Larsson, joint work with Johan Wästlund
In general

Let $k \in \mathbb{N}$. We summarize a generalization

- A maximal partial k-Factor, F, provides a non-losing strategy for k-UVG on a rooted tree;
- A non-losing strategy is to slide along edges in F.
- Denote with x_0 the unique positive real root of the equation
 \[
 x^{k+1} = \frac{k!}{k!}x^k + \frac{k!}{(k-1)!}x^k + \ldots + \frac{k!}{1!}x + k!.
 \]
In general

Let \(k \in \mathbb{N} \). We summarize a generalization

- A maximal partial \(k \)-Factor, \(F \), provides a non-losing strategy for \(k \)-UVG on a rooted tree;
- A non-losing strategy is to slide along edges in \(F \).
- Denote with \(x_0 \) the unique positive real root of the equation
 \[
 x^{k+1} = \frac{k!}{k!} x^k + \frac{k!}{(k-1)!} x^k + \ldots + \frac{k!}{1!} x + k!.
 \]
- The critical intensity for \(k \)-blocking GWUVG is \(\lambda_0 = \frac{k! e^{x_0}}{x_0^k} \).

The probability for a Second player win is \(\alpha = \frac{x_0^{k+1}}{k! e^{x_0}} \).
Other distributions?

Let a_i be uniformly distributed on $0, 1, \ldots, N-1$ so that $a_i = 1/N$ if $i \in \{0, 1, \ldots, N-1\}$, and zero otherwise. Denote UVG on this GW process N-GW.

Theorem

The probability for a draw on N-GW with uniform distribution is zero for all $N \geq 0$. For $N = 2, 3$ the second player wins with probability $2/3$ and $3 - \sqrt{6} \approx 0.55$. For $N > 3$ the probability for a first player win is > 0.5.
Let \(a_i \) be uniformly distributed on \(0, 1, \ldots, N - 1 \) so that \(a_i = 1/N \) if \(i \in \{0, 1, \ldots, N - 1\} \), and zero otherwise. Denote UVG on this GW process \(N\text{-GW} \).

Theorem

*The probability for a draw on \(N\text{-GW} \) with uniform distribution is zero for all \(N \geq 0 \). For \(N = 2, 3 \) the second player wins with probability \(2/3 \) and \(3 - \sqrt{6} \approx 0.55 \). For \(N > 3 \) the probability for a first player win is \(> 0.5 \).

Is this the end of the story of random 'bifurcation games'?
Wighted Heads (= 0 children) and tails (= 2)?

\[
t = \Pr(\text{a node has precisely 2 children})
\]

\[
1 - t = \Pr(\text{a node has no children})
\]

\[
f(x) = 1 - t + tx^2
\]

\[
|f(x^*)| < 1
\]

\[
|f(x^*)| > 1
\]

\[
t = 1 - 1/\sqrt{3} \approx 0.866
\]

First player wins

Second player wins

Draw

Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs