THE *-OPERATOR AND INVARIANT SUBTRACTION GAMES

URBAN LARSSON

ABSTRACT. An invariant subtraction game is a 2-player impartial game defined by a set of invariant moves (k-tuples of non-negative integers) \mathcal{M} . Given a position (another k-tuple) $\boldsymbol{x} = (x_1, \ldots, x_k)$, each option is of the form $(x_1 - m_1, \ldots, x_k - m_k)$, where $\boldsymbol{m} = (m_1, \ldots, m_k) \in \mathcal{M}$ (and where $x_i - m_i \geq 0$, for all *i*). Two players alternate in moving and the player who moves last wins. The set of non-zero P-positions of the game \mathcal{M} defines the moves in the dual game \mathcal{M}^* . For example, in the game of (2-pile Nim)* a move consists in removing the same positive number of tokens from both piles. Our main results concern a double application of \star , the operation $\mathcal{M} \to (\mathcal{M}^*)^*$. We establish a fundamental 'convergence' result for this operation. Then, we give necessary and sufficient conditions for the relation $\mathcal{M} = (\mathcal{M}^*)^*$ to hold. We show that it holds for example with $\mathcal{M} = k$ -pile Nim.

1. INTRODUCTION AND TERMINOLOGY

An invariant subtraction game [DR, LHF] is a two-player impartial combinatorial game (see [BCG] for a background on such games) defined on a set of positions represented as k-tuples $\boldsymbol{x} = (x_1, \ldots, x_k)$, where $k \in \mathbb{N} = \{1, 2, \ldots\}$ and $x_i \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. The move options are determined by a set, $\mathcal{M} \subset \mathbb{N}_0^k \setminus \{\mathbf{0}\}$, of invariant moves. Each option, from a given position $\boldsymbol{x} = (x_1, \ldots, x_k)$, is of the form

$$\boldsymbol{x} \ominus \boldsymbol{m} = (x_1 - m_1, \dots, x_k - m_k) \succeq \boldsymbol{0},$$

where $\boldsymbol{m} = (m_1 \dots, m_k) \in \mathcal{M}$ (and $x_i - m_i \geq 0$ for all *i*). The players alternate in moving and the player who moves last wins. Clearly, this setting excludes the possibility of a draw game, but it includes many classical "takeaway" games played on a finite number of tokens, e.g. Nim [B], Wythoff Nim [W], the (one-pile) subtraction games in [BCG].

Remark 1. Our setting is very similar to the "take-away" games in [G]. However, since nowadays the term "take-away" often includes the possibility of a certain form of "move dependence" [S, Z] which we are not considering here, we prefer to use the terminology introduced in [DR]. Also, we differ from [G] in the definition of the ending condition of a game. Golomb's unique winning condition is a move to $\mathbf{0}$, so that in his setting many games are draw. (He also allows for the possibility of the vector $\mathbf{0}$ as a move.)

Given an invariant subtraction game \mathcal{M} , we call a position N if the player about to move (the next player) wins. Otherwise it is P (the previous player

Key words and phrases. Dual game; Game convergence; Game reflexivity; Impartial game; Invariant subtraction game; *-operator.

wins). Hence, a position is P if and only if each option is N. A position \boldsymbol{x} is *terminal* if $\mathbf{0} \leq \boldsymbol{y} \leq \boldsymbol{x}$ implies $\boldsymbol{y} \notin \mathcal{M}$. Hence, each terminal position is P. Altogether this gives that the sets of N- and P-positions are recursively defined. We denote these sets by $\mathcal{N}(\mathcal{M})$ and $\mathcal{P}(\mathcal{M})$ respectively.

Suppose that $X \subseteq \mathbb{N}_0^k$. Then, we denote by

 $X' = X \setminus \{\mathbf{0}\}.$

Let \mathcal{M} be an invariant subtraction game. Then the *dual game* of \mathcal{M} is defined by

$$\mathcal{M}^{\star} = \mathcal{P}(\mathcal{M})'$$

and \mathcal{M} is *reflexive* if

$$\mathcal{M} = \mathcal{P}(\mathcal{M}^{\star})'.$$

(Thus we have departed somewhat from the terminology used in [LHF].) As before, we denote by $(\mathcal{M}^*)^* = \mathcal{M}^{**}$.

A sequence of invariant subtraction games $(\mathcal{M}_i)_{i\in\mathbb{N}_0}$ converges if, for all $\boldsymbol{x} \in \mathbb{N}_0^k$, there is an $n_0 = n_0(\boldsymbol{x}) \in \mathbb{N}_0$ such that, for all $n \ge n_0$, for all $\boldsymbol{y} \preceq \boldsymbol{x}$, $\boldsymbol{y} \in \mathcal{M}_n$ if and only if $\boldsymbol{y} \in \mathcal{M}_{n_0}$. If $(\mathcal{M}_i)_{i\in\mathbb{N}_0}$ converges, then we can define the unique 'limit-game'

(1)
$$\lim_{i\in\mathbb{N}_0}\mathcal{M}_i.$$

For $i \in \mathbb{N}$, let \mathcal{M}^i denote the game $(\mathcal{M}^{i-1})^*$ and where $\mathcal{M} = \mathcal{M}^0$ is an invariant subtraction game.

Let us state our two main results, proved in Section 2 and 3 respectively.

Theorem 1. Let \mathcal{M} denote an invariant subtraction game. Then the sequence $(\mathcal{M}^{2i})_{i \in \mathbb{N}_0}$ converges.

Let $X \subseteq \mathbb{N}_0^k$. Then we denote by $\mathcal{D}(X) = \{ \boldsymbol{x} - \boldsymbol{y} \succ \boldsymbol{0} \mid \boldsymbol{x}, \boldsymbol{y} \in X \}.$

Theorem 2. Let \mathcal{M} denote an invariant subtraction game. Then the following items are equivalent,

- (a) \mathcal{M} is reflexive,
- (b) $\mathcal{M} = \lim_{i \in \mathbb{N}_0} \mathcal{M}^{2i}$, for some invariant subtraction game \mathcal{M}^0 ,
- (c) $\mathcal{D}(\mathcal{M}) \subset \mathcal{N}(\mathcal{M}).$

In Figure 1 we demonstrate a simple application of Theorem 2 (c). In Figure 2 we show an example of a game which has a very simple structure, but for which we do not know whether reflexivity holds for any game resulting from a finite number of recursive applications of \star . (Due to computer simulations there appears to be many such games.) In Section 3 we study a consequence of Theorem 2, which relates to the type of question studied in [DR, LHF]. We give a partial resolution of the problem: Given a set $S \subset \mathbb{N}_0^k$, is there a game \mathcal{M} such that $\mathcal{P}(\mathcal{M}) = S$?

FIGURE 1. The figures illustrate three recursive applications of \star on $\mathcal{M} = \{(1,1), (1,2)\}$ (for positions with coordinates less than 20). By Theorem 2 (c), \mathcal{M} is not reflexive since $(1,2) \ominus (1,1) = (0,1) \in \mathcal{P}(\mathcal{M})$. Neither is the dual, \mathcal{M}^{\star} , since (1,0) and (3,2) are moves, but $(3,2) \ominus (1,0) = (2,2) \in$ $\mathcal{P}(\mathcal{M}^{\star})$. On the other hand $\mathcal{M}^{\star\star} = \{(1,1)(2,2)\}$ is reflexive, since $(2,2) \ominus (1,1) = (1,1) \in \mathcal{M}^{\star\star} \subset \mathcal{N}(\mathcal{M}^{\star\star})$. Hence \mathcal{M}^n is reflexive for all $n \geq 2$.

FIGURE 2. The figures illustrate 10 recursive applications of \star on $\mathcal{M} = \{(2,2), (3,5), (5,3)\}$ (for positions with coordinates less than 100). Notice that $(3,5) \ominus (2,2) = (1,3) \in \mathcal{P}(\mathcal{M})$, so that by Theorem 2 (c), \mathcal{M} is not reflexive (as is also clear by the figures). However, due to these experimental results, $\mathcal{M}^n \cap \{(i,j) \mid i,j \in \{0,1,\ldots,100\}$ is identical for n = 8 and n = 10 and hence, for all even $n \geq 8$ (and similarly for all odd $n \geq 9$). Of course, by Theorem 1, we get that $\lim \mathcal{M}^i$ exists. However, we do not know whether there exists an $n \geq 8$ such that $\mathcal{M}^n = \lim \mathcal{M}^i$ (see also Question 2 on page 9).

URBAN LARSSON

2. Convergence

Let us begin by proving Theorem 1. We omit a proof of the first lemma (see also [LHF]).

Lemma 1 ([LHF]). Let \mathcal{M} denote an invariant subtraction game. Then

- (a) $\mathcal{P}(\mathcal{M}) \cap \mathcal{M} = \emptyset$,
- (b) $\mathcal{M}^{\star} \cap \mathcal{M} = \emptyset$, and
- (c) $\mathcal{P}(\mathcal{M}) \cap \mathcal{P}(\mathcal{M}^{\star}) = \emptyset$.

The next lemma concerns consequences of Lemma 1 for the $\star\star$ -operator.

Lemma 2. Let \mathcal{M} denote an invariant subtraction game.

- (a) Suppose that $x \in \mathcal{M} \setminus \mathcal{M}^{\star\star}$. Then $x \in \mathcal{N}(\mathcal{M}^{\star}) \setminus \mathcal{M}^{\star}$.
- (b) Suppose that $\mathbf{0} \prec \mathbf{x} \in \mathbb{N}_0^k$ is such that, for all $\mathbf{m} \prec \mathbf{x}$, $\mathbf{m} \in \mathcal{M}$ if and only if $\mathbf{m} \in \mathcal{M}^{\star\star}$. Then

(2)
$$x \notin \mathcal{M}^{\star\star} \setminus \mathcal{M}.$$

Proof. Assume that the hypothesis of item (a) holds. Then, since $\boldsymbol{x} \in \mathcal{M}$, by Lemma 1, $\boldsymbol{x} \notin \mathcal{P}(\mathcal{M})$, so that $\boldsymbol{x} \notin \mathcal{M}^{\star}$. Also, since $\boldsymbol{x} \notin \mathcal{M}^{\star\star}$, by definition of \star , we get that $\boldsymbol{x} \in \mathcal{N}(M^{\star})$.

For (b), suppose that the negation of (2) holds, that is that $\boldsymbol{x} \in \mathcal{M}^{\star\star} \setminus \mathcal{M}$. Then

$$(3) x \in \mathcal{P}(\mathcal{M}^{\star})'.$$

which, by Lemma 1 (c), gives $x \notin \mathcal{P}(\mathcal{M})$. Altogether, we get that $x \in \mathcal{N}(\mathcal{M}) \setminus \mathcal{M}$. Then, by definition of N, there is a move, say $m \in \mathcal{M}$, with $m \prec x$, such that

(4)
$$\boldsymbol{y} = \boldsymbol{x} \ominus \boldsymbol{m} \in \mathcal{P}(\mathcal{M})' = \mathcal{M}^{\star}.$$

Then, by the assumption in the lemma, $m \in \mathcal{M}^{\star\star} = \mathcal{P}(\mathcal{M}^{\star})'$. By (3) and (4), this contradicts the definition of P in the game \mathcal{M}^{\star} .

Proof (of Theorem 1). Let \mathcal{M} denote an invariant subtraction game. Suppose that

(5)
$$\boldsymbol{x} \in \mathbb{N}_0^k \setminus \{\mathbf{0}\}$$

is such that, for all $y \prec x$,

(6)
$$\boldsymbol{y} \in \mathcal{M}$$
 if and only if $\boldsymbol{y} \in \mathcal{M}^{\star\star}$.

Then clearly

(7)
$$\boldsymbol{y} \in \mathcal{P}(\mathcal{M})$$
 if and only if $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^{\star\star})$,

so that, by definition of \star ,

 $\boldsymbol{y} \in \mathcal{M}^{\star}$ if and only if $\boldsymbol{y} \in \mathcal{M}^{3}$.

Hence, a repeated application of \star gives

 $oldsymbol{y} \in \mathcal{M}^{2i}$ if and only if $oldsymbol{y} \in \mathcal{M}^{2i+2}$

and also

$$\boldsymbol{y} \in \mathcal{M}^{2i+1}$$
 if and only if $\boldsymbol{y} \in \mathcal{M}^{2i+3}$,

for all $i \in \mathbb{N}_0$. Suppose that \boldsymbol{x} is of the form in (5). Then, by the definition of convergence, it suffices to demonstrate that the number, i, of applications of \star on \mathcal{M} , so that

(8)
$$\boldsymbol{x} \in \mathcal{M}^{2i}$$
 if and only if $\boldsymbol{x} \in \mathcal{M}^{2i+2}$

is bounded. Precisely, we will show that i = 1 suffices, which means that to satisfy (8), at most 2 iterations of $\star\star$ is needed for each position which satisfies the requirements of \boldsymbol{x} in (6). Thus we show that, for any game \mathcal{M} and any position \boldsymbol{x} , it suffices to take $n_0 = 2 \prod_{i=1}^{k} x_i$ in the definition of convergence.

We have four cases,

- (A) $\boldsymbol{x} \in \mathcal{N}(\mathcal{M}) \cap \mathcal{N}(\mathcal{M}^{\star\star}),$
- (B) $\boldsymbol{x} \in \mathcal{P}(\mathcal{M}) \cap \mathcal{P}(\mathcal{M}^{\star\star}),$
- (C) $\boldsymbol{x} \in \mathcal{N}(\mathcal{M}) \cap \mathcal{P}(\mathcal{M}^{\star\star})$ or
- (D) $\boldsymbol{x} \in \mathcal{P}(\mathcal{M}) \cap \mathcal{N}(\mathcal{M}^{\star\star}).$

At first, notice that (B) together with Lemma 1 (a) implies $x \notin \mathcal{M} \cup \mathcal{M}^{\star\star}$ (which gives i = 0 in (8)). Similarly, for case (D), by using Lemma 1 (a) twice, since $x \in \mathcal{P}(\mathcal{M})' = \mathcal{M}^{\star}$, we get $x \notin \mathcal{M}$ and $x \notin \mathcal{P}(\mathcal{M}^{\star})' = \mathcal{M}^{\star\star}$.

It remains to investigate case (A) and (C).

Case (A): By Lemma 2 (a), we may assume that $x \in \mathcal{M} \setminus \mathcal{M}^{\star\star}$ (for otherwise we are done). By Lemma 2 (a), this gives that

(9)
$$\boldsymbol{x} \in \mathcal{N}(M^{\star}) \setminus \mathcal{M}^{\star}.$$

Hence, by definition of N, we get that there is a position $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^{\star})'$ such that

$$m = x \ominus y \in \mathcal{M}^{\star}.$$

By (6) and (7) this implies that $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^3)$ and $\boldsymbol{m} \in \mathcal{M}^3$. If \boldsymbol{x} were a move in \mathcal{M}^4 then, by definition of $\star, \boldsymbol{x} \in \mathcal{P}(\mathcal{M}^3)$. Altogether, this contradicts the definition of P. Hence, for this case, $\boldsymbol{x} \notin \mathcal{M}^4$, which suffices for convergence in this case.

Case (C): Since $\boldsymbol{x} \in \mathcal{N}(\mathcal{M})$, the definition of \star gives $\boldsymbol{x} \notin \mathcal{M}^{\star}$. Hence, by $\boldsymbol{x} \in \mathcal{P}(\mathcal{M}^{\star\star})$ and Lemma 1 (c), we get that $\boldsymbol{x} \in \mathcal{N}(\mathcal{M}^{\star}) \setminus \mathcal{M}^{\star}$. As in the proof of (A), from (9) an onwards, this gives that $\boldsymbol{x} \notin \mathcal{M}^4$. Also, Lemma 1 (a), gives that $\boldsymbol{x} \notin \mathcal{M}^{\star\star}$, which proves convergence.

3. Reflexivity

In this section we discuss criteria for reflexivity of a game. We begin by proving Theorem 2. Let us restate it. **Theorem 2.** Let \mathcal{M} denote an invariant subtraction game. Then the following items are equivalent.

- (a) \mathcal{M} is reflexive,
- (b) $\mathcal{M} = \lim_{i \in \mathbb{N}_0} \mathcal{M}^{2i}$, for some invariant subtraction game \mathcal{M}^0 ,
- (c) $\mathcal{D}(\mathcal{M}) \subset \mathcal{N}(\mathcal{M}).$

Proof. If $\mathcal{M} = \mathcal{M}^{\star\star}$ then $\mathcal{M}^{2i} = \mathcal{M}^{2i+2}$, for all $i \geq 0$, so that $\lim \mathcal{M}^{2i} = \mathcal{M}$. \mathcal{M} . If $\mathcal{M} = \lim \mathcal{M}^{2i}$ exists, then $\mathcal{M}^{\star\star} = (\lim \mathcal{M}^{2i})^{\star\star} = \lim \mathcal{M}^{2i} = \mathcal{M}$. Hence, it remains to prove that \mathcal{M} is reflexive if and only if $D(\mathcal{M}) \subset \mathcal{N}(\mathcal{M})$.

" \Rightarrow ": Suppose that \mathcal{M} is reflexive. Then, we have to prove that $\mathcal{D}(\mathcal{M}) \subset \mathcal{N}(\mathcal{M})$. Suppose, on the contrary, that there are distinct $m_1, m_2 \in \mathcal{M}$ such that

(10)
$$\boldsymbol{m}_1 \ominus \boldsymbol{m}_2 = \boldsymbol{x} \in \mathcal{P}(\mathcal{M})'.$$

Then, by definition of \star ,

(11)
$$x \in \mathcal{M}^{\star}$$
.

Also, by reflexivity, we get that $\{m_1, m_2\} \subset \mathcal{M}^{\star\star} = \mathcal{P}(\mathcal{M}^{\star})'$. But, by (10) and definition of P, this contradicts (11).

"⇐": Suppose that $\mathcal{D}(\mathcal{M}) \subset \mathcal{N}(\mathcal{M})$ but $\mathcal{M} \neq \mathcal{M}^{\star\star}$. Then there is some least $\boldsymbol{m} \in (\mathcal{M} \setminus \mathcal{M}^{\star\star}) \cup (\mathcal{M}^{\star\star} \setminus \mathcal{M})$, which, by Lemma 2 (b), gives $\boldsymbol{m} \in \mathcal{M} \setminus \mathcal{M}^{\star\star}$. As in the proof of Theorem 1, this gives $\boldsymbol{m} \in \mathcal{N}(\mathcal{M}^{\star}) \setminus \mathcal{M}^{\star}$. Then, by definition of N, there are $0 \prec \boldsymbol{x}, \boldsymbol{y} \prec \boldsymbol{m}$, with $\boldsymbol{x} \in \mathcal{M}^{\star}$ and $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^{\star})$, such that

$$(12) m \ominus x = y.$$

Then, by definition of $\star, \boldsymbol{y} \in \mathcal{M}^{\star\star}$ and so, by minimality of $\boldsymbol{m} \in \mathcal{M} \setminus \mathcal{M}^{\star\star}$, we must have $\boldsymbol{y} \in \mathcal{M}$. But, the definition of \star also gives $\boldsymbol{x} \in \mathcal{P}(\mathcal{M})$, which, by the assumption $\mathcal{D}(\mathcal{M}) \subset \mathcal{N}(\mathcal{M})$, contradicts (12).

By Theorem 2 (c), one never needs to compute $\mathcal{P}(\mathcal{M}^*)$ to understand the reflexivity properties of a game \mathcal{M} . Even more is true for many games \mathcal{M} . Sometimes a very incomplete understanding of the winning strategy $\mathcal{P}(\mathcal{M})$ suffices. Namely, to disprove reflexivity it suffices to find a single move which 'connects' any two P-positions. On the other hand, to prove reflexivity, it suffices to find some subset $X \subset \mathcal{N}(\mathcal{M})$ such that $\mathcal{D}(\mathcal{M}) \subseteq X$ holds.

In particular, if we take $X = \mathcal{M}$ we obtain very simple reflexivity properties. Namely, whenever $\mathcal{D}(\mathcal{M}) \subset \mathcal{M} \subseteq \mathcal{N}(\mathcal{M})$, the game \mathcal{M} is 'trivially' reflexive, that is, no knowledge of the winning strategy of \mathcal{M} is required to establish reflexivity.

Let $X \subset \mathbb{N}_0^k$. Then the set X is

- subtractive if, for all $\boldsymbol{x}, \boldsymbol{y} \in X$, with $\boldsymbol{x} \prec \boldsymbol{y}, \, \boldsymbol{y} \ominus \boldsymbol{x} \in X$.
- a lower ideal if, for all $y \in X$, $x \prec y$ implies $x \in X$. (Hence the set of terminal P-positions of a given game constitutes a lower ideal.)
- an *anti-chain*, if all distinct pairs $x, y \in X$ are unrelated, that is $x \leq y$ implies x = y.

We have the following corollary of Theorem 2 (see also Figure 3 for an application of (a)).

Corollary 1. The game \mathcal{M} is reflexive if, regarded as a set,

- (a) \mathcal{M} is subtractive,
- (b) \mathcal{M} is a lower ideal,
- (c) $\mathcal{M} = \{(x, 0, \dots, 0), (0, x, 0, \dots, 0), \dots, (0, \dots, 0, x) \in \mathbb{N}_0^k \mid x \in \mathbb{N}\},\$ that is \mathcal{M} represents the classical game of k-pile Nim [B],
- (d) \mathcal{M} is an anti-chain, or
- (e) $\mathcal{M} = \{ \boldsymbol{m} \}$, that is \mathcal{M} consists of a single move.

Proof. For (a), notice that, by Theorem 2,

$$\mathcal{D}(\mathcal{M}) = \{ \boldsymbol{m}_1 \ominus \boldsymbol{m}_2 \succ \boldsymbol{0} \mid \boldsymbol{m}_1, \boldsymbol{m}_2 \in \mathcal{M} \} \subseteq \mathcal{M} \subseteq \mathcal{N}(\mathcal{M}),$$

which gives the claim. Then, the inclusions of families of games $\{\mathcal{M}_e\} \subset \{\mathcal{M}_d\} \subset \{\mathcal{M}_a\}$ and $\{\mathcal{M}_c\} \subset \{\mathcal{M}_b\} \subset \{\mathcal{M}_a\}$ prove the corollary, where \mathcal{M}_a denotes the game given by a set \mathcal{M} as in item (a) etc.

FIGURE 3. The game $\{(1, 1), (2, 2), (0, 8), (8, 0)\}$ is subtractive and hence, by Corollary 1, reflexive. The figure represents its first few P-positions. (In Figure 1, $\mathcal{M}^{\star\star}$ is subtractive, but \mathcal{M} is not.) Hence the dual is also reflexive (but not subtractive). In spite of the simplicity of the game rules, its set of P-positions seem to have a very complex structure (in the sense of [F2]). By the experimental result in this figure, it seems to be 'a-periodic' in general, but 'asymptotically periodic' for each fixed x-coordinate (or y-coordinate), but we do not understand these patterns. See also the final section for a comment regarding undecidability of games with a finite number of moves.

Due to this discussion, we believe that there are many interesting applications of Theorem 2. Let us begin with two.

3.1. A consequence of reflexivity. Given a set $S \subset \mathbb{N}_0^k$, is there an invariant subtraction game \mathcal{M} such that $\mathcal{P}(\mathcal{M}) = S$? This type of question was introduced in [DR], together with a challenging conjecture on a family of sets $S \subset \mathbb{N}_0^2$ defined by a certain class of increasing sequences of positive integers. (The conjecture was resolved in [LHF].) As a consequence of Theorem 2 (and Corollary 2), we are able to shed some new light on this type of question for general sets S.

Corollary 2. Let $S \subset \mathbb{N}_0^k \setminus \{\mathbf{0}\}$, $k \in \mathbb{N}$, and suppose that S is reflexive, so that, by Theorem 2,

(13)
$$\mathcal{D}(S) \subseteq \mathcal{N}(S).$$

Then, there is a game \mathcal{M} satisfying

(14)
$$\mathcal{P}(\mathcal{M})' = S.$$

For the other direction, (13) holds if and only if there is a game \mathcal{M} which satisfies both (14) and

(15)
$$\mathcal{M} = \mathcal{P}(S)'.$$

Proof. Suppose that (13) holds. Then, by Theorem 2, the game S is reflexive, so that $S = S^{\star\star}$. Take $\mathcal{M} = S^{\star}$. Then, the definition of \star gives the first claim. (Because $\mathcal{P}(\mathcal{M})' = \mathcal{P}(S^{\star})' = S^{\star\star} = S$.)

For the second part, suppose that there is no game \mathcal{M} such that (15) holds (here S is regarded as a game). Then, for all \mathcal{M} such that (14) hold, we have that

$$S^{\star\star} = \mathcal{P}(\mathcal{P}(S)')' \neq \mathcal{P}(\mathcal{M})' = S,$$

and so, by Theorem 2, since reflexivity of S does not hold neither does (13).

If, on the other hand, (15) and (14) hold for one and the same game \mathcal{M} , then the definition of \star gives that (13) holds.

It is easy to find a (non-reflexive) set S which does not satisfy (14) for any \mathcal{M} (see also [DR, LHF] and [G, Theorem 3.2] for a related result).

Example 1. Let $S = \{(1,1), (1,2)\}$ (see also Figure 1). Then $\mathcal{D}(S) = \{(0,1)\} \subset \{(0,x) \mid x \in \mathbb{N}_0\} \subset \mathcal{P}(S)$ so that reflexivity of S does not hold. Also, for our choice of S, there cannot be any game \mathcal{M} satisfying (14). Indeed, by the definition of N, (0,1) has to be a move, which contradicts the definition of P since $(1,2) \ominus (1,1) = (0,1)$.

Neither is it hard to find a set S which satisfies (14) but not (15), although strictly more than two (candidate) P-positions are needed.

Example 2. Suppose that $S = \{(0, 1), (1, 0), (1, 1), (3, 3)\}$. Then the first part of the corollary does not give any information on whether there is a game \mathcal{M} such that (14) holds. Namely we have that $(2, 2) \in \mathcal{D}(S) \cap \mathcal{P}(S)$, which contradicts (13) (and thus reflexivity of S). However, by inspection one finds that $S \subset \mathcal{P}(\mathcal{Q})$ for $\mathcal{Q} = \{(0, 2), (2, 0), (1, 2), (2, 1)\}$. Then, in spite of the observation that S is not reflexive, this gives the existence of a game \mathcal{M} satisfying (14). (For example take $\mathcal{M} = \mathcal{Q} \cup \{(x, y), (y, x) \mid x \geq 4\}$.)

8

3.2. Decidability and reflexivity. A very simple configuration of moves, e.g. Figure 3, can have a very 'complex' set of P-positions (dual game). In fact, suppose the invariant subtraction game $\mathcal{M} \subset \mathbb{N}_0^k$ has finite cardinality. Then we wonder whether it is algorithmically decidable if a given k-tuple ($\succ \mathbf{0}$) appears as a difference of any two P-positions of \mathcal{M} . (In [LW] we have proved undecidability in a related sense for a similar class of invariant games.) However, by Theorem 2, since $\mathcal{D}(\mathcal{M})$ is finite if \mathcal{M} is, the question whether a certain finite configuration of moves is reflexive or not must be decidable. Hence we get another corollary of Theorem 2

Corollary 3. Suppose that the number of moves in the invariant subtraction game \mathcal{M} is finite. Then it takes at most a finite computation to decide whether \mathcal{M} is reflexive or not.

4. DISCUSSION

In this paper we have presented some general territory of invariant subtraction games and the \star -operator. The issues of convergence of the $\star\star$ operator have been completely resolved, but we have not found any explicit formula for a 'non-trivial limit-game' as in (1). By 'trivial limit-game' we here mean a game H which satisfies $H = \mathcal{M}^{2n} = \lim \mathcal{M}^{2i}$ for some $n \in \mathbb{N}$ and some game \mathcal{M} .

Problem 1. Give an explicit formula for a non-trivial limit game. That is, give an explicit (tractable [F2]) formula for its set of moves (without the mention of a limit of a sequence of games).

Our next question is a continuation of the examples in Section 3.

Question 1. Examples 1 and 2 suggest a classification of non-reflexive sets $S \subset \mathbb{N}_0^k$, that is, by Theorem 2, sets for which there exists a pair $x, y \in S'$ such that $x \ominus y \in \mathcal{P}(S')$. The first class should contain those sets S for which there exist a game \mathcal{M} such that $\mathcal{P}(\mathcal{M})' = S$ and the second, those for which there is no such game. Suppose there exists a pair $x, y \in S$ such that the only possible 'candidate move' from $m = x \ominus y$ to another position in $S \cup \{0\}$ is to 0. Then, we are in Example 1 and so in the second class. On the other hand, Example 2 gives an example when there is no such pair x, y. But suppose that the positions (2,3) and (3,2) are included to the set S in Example 2. Then, neither the move (2,2) nor the moves (1,2) and (2,1) may be included to the candidate set \mathcal{M} , and hence S would have belonged to the second class. Is there an explicit and exhaustive classification which settles the type of question suggested by Example 1 and 2?

In Figure 2 we gave an example of a non-reflexive game with a non-reflexive dual, but where the dual of the dual is reflexive. In the example of the 'symmetric' game $\mathcal{M} = \{(2, 2), (3, 5), (5, 3)\}$ from Figure 2 contains only three moves, but I was not able to determine whether there is an n such that \mathcal{M}^n is reflexive or not. This discussion leads us to our final question.

Question 2. Is there, for each $n \in \mathbb{N}$, a game \mathcal{M} such that \mathcal{M}^n is reflexive, but \mathcal{M}^{n-1} is not?

We do not know if the answer to Question 2 is positive for any $n \ge 3$.

URBAN LARSSON

References

- [BCG] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways, 1-2 Academic Press, London (1982). Second edition, 1-4. A. K. Peters, Wellesley/MA (2001/03/03/04).
- [B] C. L. Bouton, Nim, A Game with a Complete Mathematical Theory The Annals of Mathematics, 2nd Ser., Vol. 3, No. 1/4. (1901 - 1902), pp. 35-39.
- [DR] E. Duchêne and M. Rigo, Invariant Games, Theoret. Comp. Sci., Vol. 411, 34-36 (2010), pp. 3169-3180
- [F2] A. S. Fraenkel, Complexity, appeal and challenges of combinatorial games, Proc. of Dagstuhl Seminar "Algorithmic Combinatorial Game Theory", *Theoret. Comp. Sci.* **313** (2004) 393-415, special issue on Algorithmic Combinatorial Game Theory.
- [G] S. W. Golomb, A mathematical investigation of games of "take-away". J. Combinatorial Theory 1 (1966) 443—458.
- [LHF] U. Larsson, P. Hegarty, A. S. Fraenkel, Invariant and dual subtraction games resolving the Duchêne-Rigo Conjecture, *Theoret. Comp. Sci.* Vol. 412, 8-10 (2011) pp. 729-735.
- [LW] U. Larsson, J. Wästlund, From heaps of matches to undecidability of games, preprint.
- [S] A. J. Schwenk, "Take-Away Games", Fibonacci Quart. 8 (1970), 225-234.
- [Z] Michael Zieve, Take-Away Games, Games of No Chance, MSRI Publications, 29, (1996) pp. 351361
- [W] W.A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907) 199-202.