THE ~-OPERATOR AND INVARIANT SUBTRACTION
GAMES

URBAN LARSSON

ABSTRACT. An invariant subtraction game is a 2-player impartial game
defined by a set of invariant moves (k-tuples of non-negative integers)
M. Given a position (another k-tuple) € = (z1,...,zx), each option
is of the form (z1 —ma,...,zK — my), where m = (ma,...,my) € M
(and where z; — m; > 0, for all i). Two players alternate in moving
and the player who moves last wins. The set of non-zero P-positions
of the game M defines the moves in the dual game M*. For example,
in the game of (2-pile Nim)* a move consists in removing the same
positive number of tokens from both piles. Our main results concern
a double application of %, the operation M — (M*)*. We establish
a fundamental ‘convergence’ result for this operation. Then, we give
necessary and sufficient conditions for the relation M = (M™)* to hold.
We show that it holds for example with M = k-pile Nim.

1. INTRODUCTION AND TERMINOLOGY

An invariant subtraction game [DR, LHF] is a two-player impartial combi-
natorial game (see [BCG] for a background on such games) defined on a set of
positions represented as k-tuples @ = (z1,...,x), where k € N={1,2,...}
and x; € Ng = N U {0}. The move options are determined by a set,
M C N\ {0}, of invariant moves. Each option, from a given position
x = (z1,...,2k), is of the form

rom=(xy —my,...,x, —my) = 0,

where m = (my...,my) € M (and x; — m; > 0 for all i). The players
alternate in moving and the player who moves last wins. Clearly, this setting
excludes the possibility of a draw game, but it includes many classical “take-
away” games played on a finite number of tokens, e.g. Nim [B], Wythoff
Nim [W], the (one-pile) subtraction games in [BCG].

Remark 1. Our setting is very similar to the “take-away” games in [G].
However, since nowadays the term “take-away” often includes the possibility
of a certain form of “move dependence” [S, Z] which we are not considering
here, we prefer to use the terminology introduced in [DR]. Also, we differ
from [G] in the definition of the ending condition of a game. Golomb’s
unique winning condition is a move to 0, so that in his setting many games
are draw. (He also allows for the possibility of the vector 0 as a move.)

Given an invariant subtraction game M, we call a position N if the player
about to move (the next player) wins. Otherwise it is P (the previous player
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wins). Hence, a position is P if and only if each option is N. A position x
is terminal if 0 < y < « implies y ¢ M. Hence, each terminal position is
P. Altogether this gives that the sets of N- and P-positions are recursively
defined. We denote these sets by N (M) and P(M) respectively.

Suppose that X C ng. Then, we denote by

X' =X\ {0}.

Let M be an invariant subtraction game. Then the dual game of M is
defined by
M* =P(M)
and M is reflexive if
M =P(M*).
(Thus we have departed somewhat from the terminology used in [LHF].) As
before, we denote by (M*)* = M**.
A sequence of invariant subtraction games (M;);en, converges if, for all
T € N’g, there is an ng = ng(x) € Ny such that, for all n > ng, for all y < x,
y € M,, if and only if y € M,,,. If (M,);en, converges, then we can define
the unique ‘limit-game’
(1) lim Mz
1€Np
For i € N, let M’ denote the game (M®~1)* and where M = M is an
invariant subtraction game.
Let us state our two main results, proved in Section 2 and 3 respectively.

Theorem 1. Let M denote an invariant subtraction game. Then the se-
quence (M?*);en, converges.

Let X C NE. Then we denote by D(X) = {x —y = 0| z,y € X}.

Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent,

(a) M is reflexive,

(b) M = lim;en, M, for some invariant subtraction game MP,

(¢) D(M) C N(M).

In Figure 1 we demonstrate a simple application of Theorem 2 (c). In
Figure 2 we show an example of a game which has a very simple structure,
but for which we do not know whether reflexivity holds for any game result-
ing from a finite number of recursive applications of x. (Due to computer
simulations there appears to be many such games.) In Section 3 we study
a consequence of Theorem 2, which relates to the type of question studied
in [DR, LHF]. We give a partial resolution of the problem: Given a set
S C N, is there a game M such that P(M) = S?
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FiGURE 1. The figures illustrate three recursive applications
of x on M = {(1,1),(1,2)} (for positions with coordinates
less than 20). By Theorem 2 (c), M is not reflexive since
(1,2) & (1,1) = (0,1) € P(M). Neither is the dual, M*,
since (1,0) and (3,2) are moves, but (3,2) © (1,0) = (2,2) €
P(M?*). On the other hand M*™* = {(1,1)(2,2)} is reflexive,
since (2,2)© (1,1) = (1,1) € M*™* C N(M*). Hence M" is
reflexive for all n > 2.

FIGURE 2. The figures illustrate 10 recursive applications of
*on M = {(2,2),(3,5),(5,3)} (for positions with coordi-
nates less than 100). Notice that (3,5) & (2,2) = (1,3) €
P(M), so that by Theorem 2 (c), M is not reflexive (as is
also clear by the figures). However, due to these experimen-
tal results, M™" N {(i,7) | i,7 € {0,1,...,100} is identical for
n = 8 and n = 10 and hence, for all even n > 8 (and sim-
ilarly for all odd n > 9). Of course, by Theorem 1, we get
that lim M® exists. However, we do not know whether there
exists an n > 8 such that M™ = lim M? (see also Question 2
on page 9).
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2. CONVERGENCE

Let us begin by proving Theorem 1. We omit a proof of the first lemma
(see also [LHF)).

Lemma 1 ([LHF]). Let M denote an invariant subtraction game. Then
(a) PM)NM =0,
(b) M*NM =0, and
(c) PM)NPM*) =0.

The next lemma concerns consequences of Lemma 1 for the *x-operator.

Lemma 2. Let M denote an invariant subtraction game.

(a) Suppose that € € M\ M**. Then x € N (M*)\ M*.
(b) Suppose that 0 < x € N& is such that, for allm < x, m € M if and
only if m € M**. Then

(2) x ¢ M\ M.

Proof. Assume that the hypothesis of item (a) holds. Then, since € M,
by Lemma 1, x ¢ P(M), so that € ¢ M*. Also, since x ¢ M**, by
definition of x, we get that & € N'(M™*).

For (b), suppose that the negation of (2) holds, that is that & € M**\ M.
Then

(3) x € P(M*Y,

which, by Lemma 1 (c), gives & ¢ P(M). Altogether, we get that x €
N(M) \ M. Then, by definition of N, there is a move, say m € M, with
m < x, such that

(4) y=xzomePM) =M".
Then, by the assumption in the lemma, m € M** = P(M*)". By (3) and
(4), this contradicts the definition of P in the game M*. O

Proof (of Theorem 1). Let M denote an invariant subtraction game.
Suppose that

(5) z e Ng \ {0}

is such that, for all y < «,

(6) y € M if and only if y € M™.
Then clearly

(7) y € P(M) if and only if y € P(M™),

so that, by definition of *,
y € M* if and only if y € M3,
Hence, a repeated application of x gives
y € M* if and only if y € M?+2
and also
y € M*T1if and only if y € M?+3,
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for all ¢« € Ny. Suppose that x is of the form in (5). Then, by the definition
of convergence, it suffices to demonstrate that the number, ¢, of applications
of x on M, so that

(8) x € M? if and only if x € M*+2

is bounded. Precisely, we will show that ¢ = 1 suffices, which means that
to satisfy (8), at most 2 iterations of xx is needed for each position which
satisfies the requirements of @ in (6). Thus we show that, for any game M
and any position @, it suffices to take ng = 2]_[?:1 x; in the definition of
convergence.

We have four cases,

(A) & € N(M) NN (M),
(B) & € P(M) NP(M*),
(C) & € N(M) N P(M*) or
(D) & € P(M) NN (M*).

At first, notice that (B) together with Lemma 1 (a) implies € ¢ MU M**
(which gives ¢ = 0 in (8)). Similarly, for case (D), by using Lemma 1 (a)
twice, since & € P(M) = M*, we get & ¢ M and x ¢ P(M*) = M**.

It remains to investigate case (A) and (C).

Case (A): By Lemma 2 (a), we may assume that & € M\ M** (for otherwise
we are done). By Lemma 2 (a), this gives that

9) x e N(M*)\ M*.
Hence, by definition of N, we get that there is a position y € P(M*)" such
that

m=x5SyecM".
By (6) and (7) this implies that y € P(M3) and m € M?3. If x were a move
in M* then, by definition of x, € P(M?3). Altogether, this contradicts the

definition of P. Hence, for this case, ¢ M?*, which suffices for convergence
in this case.

Case (C): Since & € N(M), the definition of * gives @ ¢ M*. Hence, by
x € P(M*) and Lemma 1 (¢), we get that € € N (M*) \ M*. As in the
proof of (A), from (9) an onwards, this gives that ¢ M*. Also, Lemma 1
(a), gives that @ ¢ M**, which proves convergence. O

3. REFLEXIVITY

In this section we discuss criteria for reflexivity of a game. We begin by
proving Theorem 2. Let us restate it.
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Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent.

(a) M is reflexive,

(b) M = lim;en, M, for some invariant subtraction game M°,

(¢) DIM) C N(M).

Proof. If M = M** then M? = M?*2 for all i > 0, so that lim M? =
M. If M = lim M? exists, then M** = (lim M?)* = lim M?% = M.
Hence, it remains to prove that M is reflexive if and only if D(M) C N(M).

“=": Suppose that M is reflexive. Then, we have to prove that D(M) C
N(M). Suppose, on the contrary, that there are distinct mq, my € M such
that

(10) m; O my =z € P(M).
Then, by definition of ,
(11) x € M*.

Also, by reflexivity, we get that {mq,ms} C M** = P(M*)". But, by (10)
and definition of P, this contradicts (11).

“<”: Suppose that D(M) C N (M) but M # M**. Then there is some
least m € (M \ M**) U (M** \ M), which, by Lemma 2 (b), gives m €
MA\M**. As in the proof of Theorem 1, this gives m € N (M*)\ M*. Then,
by definition of N, there are 0 < x,y < m, with € M* and y € P(M*),
such that

(12) moz=y.

Then, by definition of x, y € M** and so, by minimality of m € M\ M**,
we must have y € M. But, the definition of x also gives @ € P(M), which,
by the assumption D(M) C N (M), contradicts (12). O

By Theorem 2 (c), one never needs to compute P(M*) to understand the
reflexivity properties of a game M. Even more is true for many games M.
Sometimes a very incomplete understanding of the winning strategy P (M)
suffices. Namely, to disprove reflexivity it suffices to find a single move which
‘connects’ any two P-positions. On the other hand, to prove reflexivity, it
suffices to find some subset X C N (M) such that D(M) C X holds.

In particular, if we take X = M we obtain very simple reflexivity prop-
erties. Namely, whenever D(M) C M C N(M), the game M is ‘trivially’
reflexive, that is, no knowledge of the winning strategy of M is required to
establish reflexivity.

Let X C NE. Then the set X is

e subtractive if, for all x,y € X, withx <y, yo x € X.

e a lower ideal if, for all y € X, < y implies € X. (Hence the set
of terminal P-positions of a given game constitutes a lower ideal.)

e an anti-chain, if all distinct pairs @,y € X are unrelated, that is
x = y implies * = y.
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We have the following corollary of Theorem 2 (see also Figure 3 for an
application of (a)).
Corollary 1. The game M is reflexive if, regarded as a set,

(a) M is subtractive,

(b) M is a lower ideal,

(¢) M = {(z,0,...,0),(0,2,0,...,0),...,(0,...,0,2) € N& | z € N},
that is M represents the classical game of k-pile Nim [B],

(d) M is an anti-chain, or

() M = {m}, that is M consists of a single move.

Proof. For (a), notice that, by Theorem 2,

D(M):{ml@mg>—O|m1,m2€M}QMQN(M),

which gives the claim. Then, the inclusions of families of games {M.} C
{My} € {M,} and {M.} C {M}} C {M,} prove the corollary, where M,

denotes the game given by a set M as in item (a) etc. O
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FIGURE 3. The game {(1,1),(2,2),(0,8),(8,0)} is subtrac-
tive and hence, by Corollary 1, reflexive. The figure repre-
sents its first few P-positions. (In Figure 1, M** is subtrac-
tive, but M is not.) Hence the dual is also reflexive (but not
subtractive). In spite of the simplicity of the game rules, its
set of P-positions seem to have a very complex structure (in
the sense of [F2]). By the experimental result in this figure,
it seems to be ‘a-periodic’ in general, but ‘asymptotically pe-
riodic’ for each fixed z-coordinate (or y-coordinate), but we
do not understand these patterns. See also the final section
for a comment regarding undecidability of games with a finite
number of moves.
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Due to this discussion, we believe that there are many interesting appli-
cations of Theorem 2. Let us begin with two.

3.1. A consequence of reflexivity. Given a set S C N'g, is there an
invariant subtraction game M such that P(M) = S? This type of question
was introduced in [DR], together with a challenging conjecture on a family
of sets S C Ng defined by a certain class of increasing sequences of positive
integers. (The conjecture was resolved in [LHF].) As a consequence of
Theorem 2 (and Corollary 2), we are able to shed some new light on this
type of question for general sets S.

Corollary 2. Let S C NE\ {0}, k € N, and suppose that S is reflexive, so
that, by Theorem 2,

(13) D(S) CN(9).
Then, there is a game M satisfying
(14) P(M) =5.

For the other direction, (13) holds if and only if there is a game M which
satisfies both (14) and

(15) M ="P(9)".

Proof. Suppose that (13) holds. Then, by Theorem 2, the game S is
reflexive, so that S = S**. Take M = S*. Then, the definition of x gives
the first claim. (Because P(M)' = P(S*)' = S* = 5.)

For the second part, suppose that there is no game M such that (15)
holds (here S is regarded as a game). Then, for all M such that (14) hold,
we have that

5 =P(P(S)) #PM) =8,
and so, by Theorem 2, since reflexivity of S does not hold neither does (13).

If, on the other hand, (15) and (14) hold for one and the same game M,

then the definition of x gives that (13) holds. O

It is easy to find a (non-reflexive) set S which does not satisfy (14) for
any M (see also [DR, LHF] and [G, Theorem 3.2] for a related result).

Example 1. Let S = {(1,1),(1,2)} (see also Figure 1). Then D(S) =
{(0,1)} C {(0,2) | x € No} C P(S) so that reflexivity of S does not hold.
Also, for our choice of S, there cannot be any game M satisfying (14).
Indeed, by the definition of N, (0,1) has to be a move, which contradicts the
definition of P since (1,2) ©(1,1) = (0,1).

Neither is it hard to find a set S which satisfies (14) but not (15), although
strictly more than two (candidate) P-positions are needed.

Example 2. Suppose that S = {(0,1),(1,0),(1,1),(3,3)}. Then the first
part of the corollary does not give any information on whether there is a
game M such that (14) holds. Namely we have that (2,2) € D(S) NP(S),
which contradicts (13) (and thus reflexivity of S). However, by inspection
one finds that S C P(Q) for Q = {(0,2),(2,0),(1,2),(2,1)}. Then, in spite
of the observation that S is not reflexive, this gives the existence of a game
M satisfying (14). (For example take M = QU {(x,y), (y,z) | x > 4}.)
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3.2. Decidability and reflexivity. A very simple configuration of moves,
e.g. Figure 3, can have a very ‘complex’ set of P-positions (dual game). In
fact, suppose the invariant subtraction game M C N'g has finite cardinality.
Then we wonder whether it is algorithmically decidable if a given k-tuple
(> 0) appears as a difference of any two P-positions of M. (In [LW] we
have proved undecidability in a related sense for a similar class of invariant
games.) However, by Theorem 2, since D(M) is finite if M is, the question
whether a certain finite configuration of moves is reflexive or not must be
decidable. Hence we get another corollary of Theorem 2

Corollary 3. Suppose that the number of moves in the invariant subtraction
game M is finite. Then it takes at most a finite computation to decide
whether M is reflexive or not.

4. DISCUSSION

In this paper we have presented some general territory of invariant sub-
traction games and the x-operator. The issues of convergence of the *x-
operator have been completely resolved, but we have not found any explicit
formula for a ‘non-trivial limit-game’ as in (1). By ‘trivial limit-game’ we
here mean a game H which satisfies H = M?" = lim M? for some n € N
and some game M.

Problem 1. Give an explicit formula for a non-trivial limit game. That
is, give an explicit (tractable [F2]) formula for its set of moves (without the
mention of a limit of a sequence of games).

Our next question is a continuation of the examples in Section 3.

Question 1. Examples 1 and 2 suggest a classification of non-reflexive sets
S C ng, that is, by Theorem 2, sets for which there ewists a pair x,y € S’
such that € &y € P(S’). The first class should contain those sets S for
which there exist a game M such that P(M)" = S and the second, those for
which there is no such game. Suppose there exists a pair x,y € S such that
the only possible ‘candidate move’ from m = x © y to another position in
SU{0} is to 0. Then, we are in Example 1 and so in the second class. On
the other hand, Example 2 gives an example when there is no such pair x,y.
But suppose that the positions (2,3) and (3,2) are included to the set S in
Ezample 2. Then, neither the move (2,2) nor the moves (1,2) and (2,1)
may be included to the candidate set M, and hence S would have belonged
to the second class. Is there an explicit and erhaustive classification which
settles the type of question suggested by Example 1 and 2¢

In Figure 2 we gave an example of a non-reflexive game with a non-
reflexive dual, but where the dual of the dual is reflexive. In the example of
the ‘symmetric’ game M = {(2,2), (3,5), (5,3)} from Figure 2 contains only
three moves, but I was not able to determine whether there is an n such
that M™ is reflexive or not. This discussion leads us to our final question.

Question 2. Is there, for eachn € N, a game M such that M™ is reflexive,
but M™ 1 is not?

We do not know if the answer to Question 2 is positive for any n > 3.



10 URBAN LARSSON

REFERENCES

[BCG] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways, 1-2 Academic Press,
London (1982). Second edition, 1-4. A. K. Peters, Wellesley/MA (2001/03/03/04).

[B] C. L. Bouton, Nim, A Game with a Complete Mathematical Theory The Annals of
Mathematics, 2nd Ser., Vol. 3, No. 1/4. (1901 - 1902), pp. 35-39.

[DR] E. Duchéne and M. Rigo, Invariant Games, Theoret. Comp. Sci., Vol. 411, 34-36
(2010), pp. 3169-3180

[F2] A. S. Fraenkel, Complexity, appeal and challenges of combinatorial games, Proc. of
Dagstuhl Seminar “Algorithmic Combinatorial Game Theory”, Theoret. Comp. Sci.
313 (2004) 393-415, special issue on Algorithmic Combinatorial Game Theory.

[G] S. W. Golomb, A mathematical investigation of games of “take-away”. J. Combina-
torial Theory 1 (1966) 443—458.

[LHF] U. Larsson, P. Hegarty, A. S. Fraenkel, Invariant and dual subtraction games re-
solving the Duchéne-Rigo Conjecture, Theoret. Comp. Sci. Vol. 412, 8-10 (2011) pp.
729-735.

[LW] U. Larsson, J. Wistlund, From heaps of matches to undecidability of games,
preprint.

[S] A.J. Schwenk, “Take-Away Games”, Fibonacci Quart. 8 (1970), 225-234.

[Z] Michael Zieve, Take-Away Games, Games of No Chance, MSRI Publications, 29,
(1996) pp. 351361

[W] W.A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907)
199-202.



