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Abstract. An invariant subtraction game is a 2-player impartial game
defined by a set of invariant moves (k-tuples of non-negative integers)
M. Given a position (another k-tuple) x = (x1, . . . , xk), each option
is of the form (x1 − m1, . . . , xk − mk), where m = (m1, . . . , mk) ∈ M

(and where xi − mi ≥ 0, for all i). Two players alternate in moving
and the player who moves last wins. The set of non-zero P-positions
of the game M defines the moves in the dual game M⋆. For example,
in the game of (2-pile Nim)⋆ a move consists in removing the same
positive number of tokens from both piles. Our main results concern
a double application of ⋆, the operation M → (M⋆)⋆. We establish
a fundamental ‘convergence’ result for this operation. Then, we give
necessary and sufficient conditions for the relation M = (M⋆)⋆ to hold.
We show that it holds for example with M = k-pile Nim.

1. Introduction and terminology

An invariant subtraction game [DR, LHF] is a two-player impartial combi-
natorial game (see [BCG] for a background on such games) defined on a set of
positions represented as k-tuples x = (x1, . . . , xk), where k ∈ N = {1, 2, . . .}
and xi ∈ N0 = N ∪ {0}. The move options are determined by a set,
M ⊂ N

k
0 \ {0}, of invariant moves. Each option, from a given position

x = (x1, . . . , xk), is of the form

x ⊖ m = (x1 − m1, . . . , xk − mk) � 0,

where m = (m1 . . . ,mk) ∈ M (and xi − mi ≥ 0 for all i). The players
alternate in moving and the player who moves last wins. Clearly, this setting
excludes the possibility of a draw game, but it includes many classical “take-
away” games played on a finite number of tokens, e.g. Nim [B], Wythoff
Nim [W], the (one-pile) subtraction games in [BCG].

Remark 1. Our setting is very similar to the “take-away” games in [G].
However, since nowadays the term “take-away” often includes the possibility
of a certain form of “move dependence” [S, Z] which we are not considering
here, we prefer to use the terminology introduced in [DR]. Also, we differ
from [G] in the definition of the ending condition of a game. Golomb’s
unique winning condition is a move to 0, so that in his setting many games
are draw. (He also allows for the possibility of the vector 0 as a move.)

Given an invariant subtraction game M, we call a position N if the player
about to move (the next player) wins. Otherwise it is P (the previous player
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wins). Hence, a position is P if and only if each option is N. A position x

is terminal if 0 � y � x implies y 6∈ M. Hence, each terminal position is
P. Altogether this gives that the sets of N- and P-positions are recursively
defined. We denote these sets by N (M) and P(M) respectively.

Suppose that X ⊆ N
k
0. Then, we denote by

X ′ = X \ {0}.

Let M be an invariant subtraction game. Then the dual game of M is
defined by

M⋆ = P(M)′

and M is reflexive if
M = P(M⋆)′.

(Thus we have departed somewhat from the terminology used in [LHF].) As
before, we denote by (M⋆)⋆ = M⋆⋆.

A sequence of invariant subtraction games (Mi)i∈N0
converges if, for all

x ∈ N
k
0, there is an n0 = n0(x) ∈ N0 such that, for all n ≥ n0, for all y � x,

y ∈ Mn if and only if y ∈ Mn0
. If (Mi)i∈N0

converges, then we can define
the unique ‘limit-game’

lim
i∈N0

Mi.(1)

For i ∈ N, let Mi denote the game (Mi−1)⋆ and where M = M0 is an
invariant subtraction game.

Let us state our two main results, proved in Section 2 and 3 respectively.

Theorem 1. Let M denote an invariant subtraction game. Then the se-
quence (M2i)i∈N0

converges.

Let X ⊆ N
k
0. Then we denote by D(X) = {x − y ≻ 0 | x,y ∈ X}.

Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent,

(a) M is reflexive,
(b) M = limi∈N0

M2i, for some invariant subtraction game M0,
(c) D(M) ⊂ N (M).

In Figure 1 we demonstrate a simple application of Theorem 2 (c). In
Figure 2 we show an example of a game which has a very simple structure,
but for which we do not know whether reflexivity holds for any game result-
ing from a finite number of recursive applications of ⋆. (Due to computer
simulations there appears to be many such games.) In Section 3 we study
a consequence of Theorem 2, which relates to the type of question studied
in [DR, LHF]. We give a partial resolution of the problem: Given a set
S ⊂ N

k
0, is there a game M such that P(M) = S?
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Figure 1. The figures illustrate three recursive applications
of ⋆ on M = {(1, 1), (1, 2)} (for positions with coordinates
less than 20). By Theorem 2 (c), M is not reflexive since
(1, 2) ⊖ (1, 1) = (0, 1) ∈ P(M). Neither is the dual, M⋆,
since (1, 0) and (3, 2) are moves, but (3, 2) ⊖ (1, 0) = (2, 2) ∈
P(M⋆). On the other hand M⋆⋆ = {(1, 1)(2, 2)} is reflexive,
since (2, 2)⊖ (1, 1) = (1, 1) ∈ M⋆⋆ ⊂ N (M⋆⋆). Hence Mn is
reflexive for all n ≥ 2.

Figure 2. The figures illustrate 10 recursive applications of
⋆ on M = {(2, 2), (3, 5), (5, 3)} (for positions with coordi-
nates less than 100). Notice that (3, 5) ⊖ (2, 2) = (1, 3) ∈
P(M), so that by Theorem 2 (c), M is not reflexive (as is
also clear by the figures). However, due to these experimen-
tal results, Mn ∩ {(i, j) | i, j ∈ {0, 1, . . . , 100} is identical for
n = 8 and n = 10 and hence, for all even n ≥ 8 (and sim-
ilarly for all odd n ≥ 9). Of course, by Theorem 1, we get
that limMi exists. However, we do not know whether there
exists an n ≥ 8 such that Mn = limMi (see also Question 2
on page 9).
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2. Convergence

Let us begin by proving Theorem 1. We omit a proof of the first lemma
(see also [LHF]).

Lemma 1 ([LHF]). Let M denote an invariant subtraction game. Then

(a) P(M) ∩M = ∅,
(b) M⋆ ∩M = ∅, and
(c) P(M) ∩ P(M⋆) = ∅.

The next lemma concerns consequences of Lemma 1 for the ⋆⋆-operator.

Lemma 2. Let M denote an invariant subtraction game.

(a) Suppose that x ∈ M \M⋆⋆. Then x ∈ N (M⋆) \M⋆.
(b) Suppose that 0 ≺ x ∈ N

k
0 is such that, for all m ≺ x, m ∈ M if and

only if m ∈ M⋆⋆. Then

x 6∈ M⋆⋆ \M.(2)

Proof. Assume that the hypothesis of item (a) holds. Then, since x ∈ M,
by Lemma 1, x 6∈ P(M), so that x 6∈ M⋆. Also, since x 6∈ M⋆⋆, by
definition of ⋆, we get that x ∈ N (M⋆).

For (b), suppose that the negation of (2) holds, that is that x ∈ M⋆⋆ \M.
Then

x ∈ P(M⋆)′,(3)

which, by Lemma 1 (c), gives x 6∈ P(M). Altogether, we get that x ∈
N (M) \M. Then, by definition of N, there is a move, say m ∈ M, with
m ≺ x, such that

y = x ⊖ m ∈ P(M)′ = M⋆.(4)

Then, by the assumption in the lemma, m ∈ M⋆⋆ = P(M⋆)′. By (3) and
(4), this contradicts the definition of P in the game M⋆. �

Proof (of Theorem 1). Let M denote an invariant subtraction game.
Suppose that

x ∈ N
k

0 \ {0}(5)

is such that, for all y ≺ x,

y ∈ M if and only if y ∈ M⋆⋆.(6)

Then clearly

y ∈ P(M) if and only if y ∈ P(M⋆⋆),(7)

so that, by definition of ⋆,

y ∈ M⋆ if and only if y ∈ M3.

Hence, a repeated application of ⋆ gives

y ∈ M2i if and only if y ∈ M2i+2

and also

y ∈ M2i+1 if and only if y ∈ M2i+3,
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for all i ∈ N0. Suppose that x is of the form in (5). Then, by the definition
of convergence, it suffices to demonstrate that the number, i, of applications
of ⋆ on M, so that

x ∈ M2i if and only if x ∈ M2i+2(8)

is bounded. Precisely, we will show that i = 1 suffices, which means that
to satisfy (8), at most 2 iterations of ⋆⋆ is needed for each position which
satisfies the requirements of x in (6). Thus we show that, for any game M

and any position x, it suffices to take n0 = 2
∏

k

i=1 xi in the definition of
convergence.

We have four cases,

(A) x ∈ N (M) ∩ N (M⋆⋆),

(B) x ∈ P(M) ∩ P(M⋆⋆),

(C) x ∈ N (M) ∩ P(M⋆⋆) or

(D) x ∈ P(M) ∩ N (M⋆⋆).

At first, notice that (B) together with Lemma 1 (a) implies x 6∈ M∪M⋆⋆

(which gives i = 0 in (8)). Similarly, for case (D), by using Lemma 1 (a)
twice, since x ∈ P(M)′ = M⋆, we get x 6∈ M and x 6∈ P(M⋆)′ = M⋆⋆.

It remains to investigate case (A) and (C).

Case (A): By Lemma 2 (a), we may assume that x ∈ M\M⋆⋆ (for otherwise
we are done). By Lemma 2 (a), this gives that

x ∈ N (M⋆) \M⋆.(9)

Hence, by definition of N, we get that there is a position y ∈ P(M⋆)′ such
that

m = x ⊖ y ∈ M⋆.

By (6) and (7) this implies that y ∈ P(M3) and m ∈ M3. If x were a move
in M4 then, by definition of ⋆, x ∈ P(M3). Altogether, this contradicts the
definition of P. Hence, for this case, x 6∈ M4, which suffices for convergence
in this case.

Case (C): Since x ∈ N (M), the definition of ⋆ gives x 6∈ M⋆. Hence, by
x ∈ P(M⋆⋆) and Lemma 1 (c), we get that x ∈ N (M⋆) \M⋆. As in the
proof of (A), from (9) an onwards, this gives that x 6∈ M4. Also, Lemma 1
(a), gives that x 6∈ M⋆⋆, which proves convergence. �

3. Reflexivity

In this section we discuss criteria for reflexivity of a game. We begin by
proving Theorem 2. Let us restate it.
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Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent.

(a) M is reflexive,
(b) M = limi∈N0

M2i, for some invariant subtraction game M0,
(c) D(M) ⊂ N (M).

Proof. If M = M⋆⋆ then M2i = M2i+2, for all i ≥ 0, so that limM2i =
M. If M = lim M2i exists, then M⋆⋆ = (limM2i)⋆⋆ = limM2i = M.
Hence, it remains to prove that M is reflexive if and only if D(M) ⊂ N (M).

“⇒”: Suppose that M is reflexive. Then, we have to prove that D(M) ⊂
N (M). Suppose, on the contrary, that there are distinct m1,m2 ∈ M such
that

m1 ⊖ m2 = x ∈ P(M)′.(10)

Then, by definition of ⋆,

x ∈ M⋆.(11)

Also, by reflexivity, we get that {m1,m2} ⊂ M⋆⋆ = P(M⋆)′. But, by (10)
and definition of P, this contradicts (11).

“⇐”: Suppose that D(M) ⊂ N (M) but M 6= M⋆⋆. Then there is some
least m ∈ (M \ M⋆⋆) ∪ (M⋆⋆ \ M), which, by Lemma 2 (b), gives m ∈
M\M⋆⋆. As in the proof of Theorem 1, this gives m ∈ N (M⋆)\M⋆. Then,
by definition of N, there are 0 ≺ x,y ≺ m, with x ∈ M⋆ and y ∈ P(M⋆),
such that

m ⊖ x = y.(12)

Then, by definition of ⋆, y ∈ M⋆⋆ and so, by minimality of m ∈ M \M⋆⋆,
we must have y ∈ M. But, the definition of ⋆ also gives x ∈ P(M), which,
by the assumption D(M) ⊂ N (M), contradicts (12). �

By Theorem 2 (c), one never needs to compute P(M⋆) to understand the
reflexivity properties of a game M. Even more is true for many games M.
Sometimes a very incomplete understanding of the winning strategy P(M)
suffices. Namely, to disprove reflexivity it suffices to find a single move which
‘connects’ any two P-positions. On the other hand, to prove reflexivity, it
suffices to find some subset X ⊂ N (M) such that D(M) ⊆ X holds.

In particular, if we take X = M we obtain very simple reflexivity prop-
erties. Namely, whenever D(M) ⊂ M ⊆ N (M), the game M is ‘trivially’
reflexive, that is, no knowledge of the winning strategy of M is required to
establish reflexivity.

Let X ⊂ N
k
0. Then the set X is

• subtractive if, for all x,y ∈ X, with x ≺ y, y ⊖ x ∈ X.
• a lower ideal if, for all y ∈ X, x ≺ y implies x ∈ X. (Hence the set

of terminal P-positions of a given game constitutes a lower ideal.)
• an anti-chain, if all distinct pairs x,y ∈ X are unrelated, that is

x � y implies x = y.
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We have the following corollary of Theorem 2 (see also Figure 3 for an
application of (a)).

Corollary 1. The game M is reflexive if, regarded as a set,

(a) M is subtractive,
(b) M is a lower ideal,
(c) M = {(x, 0, . . . , 0), (0, x, 0, . . . , 0), . . . , (0, . . . , 0, x) ∈ N

k
0 | x ∈ N},

that is M represents the classical game of k-pile Nim [B],
(d) M is an anti-chain, or
(e) M = {m}, that is M consists of a single move.

Proof. For (a), notice that, by Theorem 2,

D(M) = {m1 ⊖ m2 ≻ 0 | m1,m2 ∈ M} ⊆ M ⊆ N (M),

which gives the claim. Then, the inclusions of families of games {Me} ⊂
{Md} ⊂ {Ma} and {Mc} ⊂ {Mb} ⊂ {Ma} prove the corollary, where Ma

denotes the game given by a set M as in item (a) etc. �

Figure 3. The game {(1, 1), (2, 2), (0, 8), (8, 0)} is subtrac-
tive and hence, by Corollary 1, reflexive. The figure repre-
sents its first few P-positions. (In Figure 1, M⋆⋆ is subtrac-
tive, but M is not.) Hence the dual is also reflexive (but not
subtractive). In spite of the simplicity of the game rules, its
set of P-positions seem to have a very complex structure (in
the sense of [F2]). By the experimental result in this figure,
it seems to be ‘a-periodic’ in general, but ‘asymptotically pe-
riodic’ for each fixed x-coordinate (or y-coordinate), but we
do not understand these patterns. See also the final section
for a comment regarding undecidability of games with a finite
number of moves.
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Due to this discussion, we believe that there are many interesting appli-
cations of Theorem 2. Let us begin with two.

3.1. A consequence of reflexivity. Given a set S ⊂ N
k
0 , is there an

invariant subtraction game M such that P(M) = S? This type of question
was introduced in [DR], together with a challenging conjecture on a family
of sets S ⊂ N

2
0 defined by a certain class of increasing sequences of positive

integers. (The conjecture was resolved in [LHF].) As a consequence of
Theorem 2 (and Corollary 2), we are able to shed some new light on this
type of question for general sets S.

Corollary 2. Let S ⊂ N
k
0 \ {0}, k ∈ N, and suppose that S is reflexive, so

that, by Theorem 2,

D(S) ⊆ N (S).(13)

Then, there is a game M satisfying

P(M)′ = S.(14)

For the other direction, (13) holds if and only if there is a game M which
satisfies both (14) and

M = P(S)′.(15)

Proof. Suppose that (13) holds. Then, by Theorem 2, the game S is
reflexive, so that S = S⋆⋆. Take M = S⋆. Then, the definition of ⋆ gives
the first claim. (Because P(M)′ = P(S⋆)′ = S⋆⋆ = S.)

For the second part, suppose that there is no game M such that (15)
holds (here S is regarded as a game). Then, for all M such that (14) hold,
we have that

S⋆⋆ = P(P(S)′)′ 6= P(M)′ = S,

and so, by Theorem 2, since reflexivity of S does not hold neither does (13).
If, on the other hand, (15) and (14) hold for one and the same game M,

then the definition of ⋆ gives that (13) holds. �

It is easy to find a (non-reflexive) set S which does not satisfy (14) for
any M (see also [DR, LHF] and [G, Theorem 3.2] for a related result).

Example 1. Let S = {(1, 1), (1, 2)} (see also Figure 1). Then D(S) =
{(0, 1)} ⊂ {(0, x) | x ∈ N0} ⊂ P(S) so that reflexivity of S does not hold.
Also, for our choice of S, there cannot be any game M satisfying (14).
Indeed, by the definition of N, (0, 1) has to be a move, which contradicts the
definition of P since (1, 2) ⊖ (1, 1) = (0, 1).

Neither is it hard to find a set S which satisfies (14) but not (15), although
strictly more than two (candidate) P-positions are needed.

Example 2. Suppose that S = {(0, 1), (1, 0), (1, 1), (3, 3)}. Then the first
part of the corollary does not give any information on whether there is a
game M such that (14) holds. Namely we have that (2, 2) ∈ D(S) ∩ P(S),
which contradicts (13) (and thus reflexivity of S). However, by inspection
one finds that S ⊂ P(Q) for Q = {(0, 2), (2, 0), (1, 2), (2, 1)}. Then, in spite
of the observation that S is not reflexive, this gives the existence of a game
M satisfying (14). (For example take M = Q∪ {(x, y), (y, x) | x ≥ 4}.)
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3.2. Decidability and reflexivity. A very simple configuration of moves,
e.g. Figure 3, can have a very ‘complex’ set of P-positions (dual game). In
fact, suppose the invariant subtraction game M ⊂ N

k
0 has finite cardinality.

Then we wonder whether it is algorithmically decidable if a given k-tuple
(≻ 0) appears as a difference of any two P-positions of M. (In [LW] we
have proved undecidability in a related sense for a similar class of invariant
games.) However, by Theorem 2, since D(M) is finite if M is, the question
whether a certain finite configuration of moves is reflexive or not must be
decidable. Hence we get another corollary of Theorem 2

Corollary 3. Suppose that the number of moves in the invariant subtraction
game M is finite. Then it takes at most a finite computation to decide
whether M is reflexive or not.

4. Discussion

In this paper we have presented some general territory of invariant sub-
traction games and the ⋆-operator. The issues of convergence of the ⋆⋆-
operator have been completely resolved, but we have not found any explicit
formula for a ‘non-trivial limit-game’ as in (1). By ‘trivial limit-game’ we
here mean a game H which satisfies H = M2n = limM2i for some n ∈ N

and some game M.

Problem 1. Give an explicit formula for a non-trivial limit game. That
is, give an explicit (tractable [F2]) formula for its set of moves (without the
mention of a limit of a sequence of games).

Our next question is a continuation of the examples in Section 3.

Question 1. Examples 1 and 2 suggest a classification of non-reflexive sets
S ⊂ N

k
0, that is, by Theorem 2, sets for which there exists a pair x,y ∈ S′

such that x ⊖ y ∈ P(S′). The first class should contain those sets S for
which there exist a game M such that P(M)′ = S and the second, those for
which there is no such game. Suppose there exists a pair x,y ∈ S such that
the only possible ‘candidate move’ from m = x ⊖ y to another position in
S ∪ {0} is to 0. Then, we are in Example 1 and so in the second class. On
the other hand, Example 2 gives an example when there is no such pair x,y.
But suppose that the positions (2, 3) and (3, 2) are included to the set S in
Example 2. Then, neither the move (2, 2) nor the moves (1, 2) and (2, 1)
may be included to the candidate set M, and hence S would have belonged
to the second class. Is there an explicit and exhaustive classification which
settles the type of question suggested by Example 1 and 2?

In Figure 2 we gave an example of a non-reflexive game with a non-
reflexive dual, but where the dual of the dual is reflexive. In the example of
the ‘symmetric’ game M = {(2, 2), (3, 5), (5, 3)} from Figure 2 contains only
three moves, but I was not able to determine whether there is an n such
that Mn is reflexive or not. This discussion leads us to our final question.

Question 2. Is there, for each n ∈ N, a game M such that Mn is reflexive,
but Mn−1 is not?

We do not know if the answer to Question 2 is positive for any n ≥ 3.



10 URBAN LARSSON

References

[BCG] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways, 1-2 Academic Press,
London (1982). Second edition, 1-4. A. K. Peters, Wellesley/MA (2001/03/03/04).

[B] C. L. Bouton, Nim, A Game with a Complete Mathematical Theory The Annals of

Mathematics, 2nd Ser., Vol. 3, No. 1/4. (1901 - 1902), pp. 35-39.
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