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Abstract

Combinatorial 2-player games can be studied from different perspectives. Tradi-
tionally the goal has been to acquire a perfect strategy, and to this purpose an efficient
procedure (polynomial in succinct input size) is required. However, most combinato-
rial games are intrinsically hard to analyze; success is limited to a small number of
games with predominant ‘mathematical structure’. The classical games of Nim (Bou-
ton 1901) and Wythoff Nim (Wythoff 1907) are easy to analyze rigorously, but already
seemingly modest variants, like (p, q)-GDWN (Larsson 2012, 2014), appear to with-
stand log-polynomial descriptions. Therefore, development of new methods is highly
desirable. Here, we use methods from physics, e.g. renormalization, in an attempt to
understand the larger geometry of a game’s P-positions (safe positions for the Previ-
ous player), rather than their exact configurations (Friedman et al. 2007, 2009). By
studying evolution diagrams of a general class of linear extensions of Nim, Wythoff
Nim and GDWN, we observe that P-positions often distribute uniformly along lines
(a.k.a. P-beams), visually separated from the move lines. Given a fundamental hy-
pothesis, a filling property which generalizes directly from Wythoff Nim, we formulate
natural equations on the slopes and densities of P-positions along these lines; here, a
key innovation, a reorganization model, guides us in selecting the relevant rules (move
lines). The exceptional case of the symmetric (p, q)-GDWN is interesting, because of
observed quasi-log repetitive fluctuations, and these games have defied all previous
analysis. Keywords: Combinatorial game, GDWN, Nim, Renormalization, Reorgani-
zation, Wythoff Nim.
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1 Introduction to the class Linear Nimhoff

In this paper we study a class of combinatorial games using renormalization-based techniques
from physics in combination with computer simulations. This approach leads to a proba-
bilistic geometric analysis of the underlying structure and behavior of a game. A number
of interesting features are revealed, including observations of quasi log-periodic fluctuations.
Our class of games, dubbed Linear Nimhoff, is a generalization of the classical Wythoff’s
game [Wythoff 1907] and the more recent GDWN [Larsson 2012].

The renormalization approach to games involves:

1) Identifying broad, overall patterns in games (on a course grained level) by focusing on
their scaling, asymptotic, and/or global, probabilistic behavior;

2) Analyzing these patterns using scaling/course-graining techniques derived from self-
consistency conditions;

3) A novel method for this paper, a reorganization model, which filters out game rules
that do not contribute to the broad overall patterns.

Two of the best-known impartial combinatorial games are Nim and Wythoff’s modifica-
tion of Nim, a.k.a Wythoff’s game. In two-pile Nim, players alternate in removing tokens
from a pile of their choosing, with the player who removes the last token declared the winner.
Wythoff’s game is an extension of two-pile Nim in which players, in addition to being able
to remove tokens from a selected pile (as in Nim), also have the option of removing the same
number of tokens from both piles simultaneously. Both games can be trivially but conve-
niently recast in terms of a marker moving on a semi-infinite, two-dimensional integer grid.
The marker’s (x, y) positional coordinates indicate the current number of tokens in each pile;
the lower left corner (0, 0) of the grid represents the game’s terminal position. In Nim, the
marker can slide leftwards or downwards; in Wythoff’s game, a diagonal move (down and
to the left) is also allowed. Both of these games have been well studied and are considered
completely “solved” in the sense that a complete specification of the P- and N-positions1 in
these games is possible (see, e.g., [Bouton 1901, Wythoff 1907, Berlekamp et al. 1982]).

In Linear Nimhoff, the game marker can move not only leftwards, downwards, and diag-
onally, but along other prescribed directions as well. As we shall see, this seemingly simple
extension leads to non-trivial geometric structures associated with the P-positions of the
game. Mostly, we find that the P-positions in Linear Nimhoff lie along certain diffuse lines,
and otherwise, in some specific cases exhibiting various quasi-log-periodic behavior within
diverging P-beams [Larsson 2012]. We show how the slopes and densities of these lines
(or in the case of beams, the mean values of slopes and densities) can be computed via a
semi-heuristic geometrical technique (adapted from renormalization models in Physics) first
described in [Friedman et al. 2007, Friedman et al. 2009].

The results rely on a probabilistic description of the games’ underlying structure, and in
view of recent results on a symmetric restriction GDWN [Larsson 2012, Larsson 2014], we

1In keeping with standard terminology, a P-position in a combinatorial game is a winning position for
the Previous player (i.e, the player who just moved to that position); an N-position is a winning position for
the Next player to move.
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will see that this assumption should be relaxed in some cases. Therefore we define classes of
games, guided by the observed behaviour of their outcomes.

(i) The strict class of Linear Nimhoff will consist of games for which the P-positions satisfy
a probabilistic description along lines (each probabilistic line is described unambigously
by a slope and a density).

(ii) The non-probabilistic class will contain any other Linear Nimhoff game.

The main purpose of this paper is to explain the probabilistic geometry of games in the
strict class. For games in the non-probabilistic class, we argue that some general behavior
will carry over, in spite of apparent fluctuations gradually transforming the probabilistic
geometry. Experimental data show that, in most cases, if the probabilistic geometry breaks
up into something else, then the new patterns will satisfy some quasi log-periodic fluctuations
centred in the values obtained by the strict class computations.

(iii) The QLPF class (pronounced culpif) is a subset of the non-probabilistic class (ii). It
contains games for which the P-positions (P-beams) follow some quasi log-periodic
fluctuations. An approximate scaling factor can be computed, by experimental data,
often indicating log-periodic regions void of P-positions, which heuristically shows why
the intersection of this class with the strict class (i) is empty.

(iv) The class of relaxed Linear Nimhoff is as QLPF, but where a relaxed geometric as-
sumption (allowing for forbidden regions to separate fluctuated P-beams instead of
probabilistic P-lines) includes games with log-periodic fluctuations to the class in (i).
In particular, the mean values of the densities and slopes of the P-beams will satisfy
the equations as obtained in (i).

The type of visual fluctuations in relaxed Linear Nimhoff can be very hard to describe; we
rather suggest an empirical classification of those games. By generalizing the outcomes of
games, by counting the number of P-positions as options (a method adapted from Blocking
the Queen games [Cook et al. 2015]), we obtain more accurate predictions. It remains an
open problem to determine if the classes (i) and (iv) are non-empty. Through many exper-
iments, we believe that classes (iii) and (iv) are the same, so we often identify QLPF with
relaxed Linear Nimhoff, although we are not yet aware of any method to prove this.

1.1 Game rules

Linear Nimhoff is an impartial combinatorial game played by moving a marker along positions
on a semi-infinite, two-dimensional integer grid along given half-lines. A position X = (x, y)
of a game is a vector in <2 whose coordinates are non-negative integers; the set of all positions
constitutes the position space of the game.

A rule r = (a, b) is a vector in <2 other than (0, 0), whose coordinates are non-negative
integers. The ruleset is a set R = {ri = (ai, bi), for i = 1 . . . n)} of rules, for some n > 2;
by assumption, the ruleset of Linear Nimhoff always includes the Nim-rules (a1, b1) = (1, 0)
and (an, bn) = (0, 1). The ruleset designates the legal moves in the game: from a position
X, one can select any rule r ∈ R and move along this vector to any valid position X − kr,
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Figure 1: Legal moves in Linear Nimhoff. The figure illustrates the positions available
to a player from the starting position shown (filled square) under rules {r1 = (1, 0), r2 =
(2, 1), r3 = (3, 3), r4 = (0, 1)}.

for k a positive integer. That is, from a general position X = (x, y), a player can move to
any position in the set {(x − ka, y − kb) : k ∈ Z>0, (a, b) ∈ R, x − ka ≥ 0, y − kb ≥ 0}.
The class GDWN [Larsson 2012] is a restriction of the general class Linear Nimhoff in that
(a, b) ∈ R implies also (b, a) ∈ R. The class (p, q)-GDWN consists of all games of the form
{(1, 0), (q, p), (1, 1), (p, q), (0, 1)}, 0 < p < q integers.

A player loses the game when no legal moves remain available, as occurs when the position
(0, 0) is reached.

Since the rules imply that there are no infinite sequences of moves, every position in
Linear Nimhoff can be uniquely characterized as being a P-position or an N-position. The
set of all P-positions in the game is denoted P , and the set of all N-positions is N .

Figure 1 illustrates the allowed moves for one instantiation of the game (under ruleset R =
{(1, 0), (2, 1), (3, 3), (0, 1)}). Observe that two-pile Nim and Wythoff Nim constitute special
cases of Linear Nimhoff, with rulesets {(1, 0), (0, 1)} and {(1, 0), (1, 1), (0, 1)}, respectively.

2 Observations on the P-Positions of Linear Nimhoff

Figure 2 depicts the locations of the P-positions in Linear Nimhoff for a variety of different
rulesets that we believe belong to the strict class. For reference, Figures 2a,b illustrate the
special cases of two-pile Nim and Wythoff’s game, respectively. In Nim, the P-positions
lie along the main diagonal, while in Wythoff’s game the P-positions lie near two lines
passing through the origin with slopes φ−1 = −1+

√
5

2
and φ = 1+

√
5

2
. The remainder of

4



(a)

20 40 60 80 100

20

40

60

80

100

(b)

20 40 60 80 100

20

40

60

80

100

(c)

50 100 150 200

50

100

150

200

(d)

50 100 150 200

50

100

150

200

(e)

50 100 150 200

50

100

150

200

(f)

50 100 150 200

50

100

150

200

Figure 2: The locations of the P-positions (in black) in the x-y plane for vari-
ous rulesets in Linear Nimhoff. (a) R = {(1, 0), (0, 1)} (i.e., two-pile Nim); (b)
R = {(1, 0), (1, 1), (0, 1)} (i.e., Wythoff’s game), (c) R = {(1, 0), (3, 2), (1, 1), (0, 1)};
(d) R = {(1, 0), (1, 1), (2, 3), (1, 2), (0, 1)}; (e) R = {(1, 0), (1, 1), (1, 2), (0, 1)}; (f) R =
{(1, 0), (1, 1), (1, 2), (1, 8), (0, 1)}

5



Figure 3: The location of P-beams (in white in this picture) of (3, 5)-GDWN for x 6 32600,
y 6 32600; pixels have been coarsened for better visibility.

Figure 2 illustrates what occurs for more general cases in the strict class. In Figure 3,
we show an instance of the class (iv)—the game (3, 5)-GDWN, that is the ruleset R =
{(1, 0), (5, 3), (1, 1), (3, 5), (0, 1)}, indicating a quasi-log-periodic behavior.

The computer simulations reveal the following:

1. In a typical game of Linear Nimhoff in the strict class, we observe that the P-positions
approximate certain lines passing through the origin (see Figures 2c–f). By experimen-
tal data [Larsson 2012], some of these ‘lines’ will tend to diverge, but apparently never
beyond certain bounds; see also Section 5, where the subclass GDWN [Larsson 2012],
of Linear Nimhoff is discussed. Therefore, and similar to this reference, we refer to
these lines as either P-lines or P-beams, depending on conjectured behavior as in the
strict class (i) or the QLPF class (iii), respectively.

In many cases though, the P-positions exhibit very modest scatter about the P-lines;
when computation is extended beyond a few hundred, the width of the scatter remains
small in relation to the scale of the P-line. This includes some GDWN games, such as
(1, 2)-GDWN and (2, 3)-GDWN [Larsson 2014]. Certain (p, q)-GDWN games appear
to belong to the “diverging beams” class rather than the “small scatter along lines”
class (we define this class in Section 5.1). In the case of the strict class, we assume
that, along any given line, the proportion of the number of P-positions (below given
x-coordinates) does not vary beyond certain bounds; the distribution is more or less
uniform on large spatial scales (i.e., density variations are purely local). In QLPF it
turns out that we instead compute mean values of the density and slope of a P-beam,
see also Section 5, which appears to coincide with the slope and density of an imagined
P-line, but instead representing a ‘centre’ of a P-beam.

In most observed examples, if the rules of a Linear Nimhoff game are not symmetric
then the P-positions are ‘uniformly distributed’, and the suggested notion would be “P-
line”, but we have found an exception: for the rulesetR = {(1, 0), (5, 3), (8, 5), (1, 1), (3, 5), (0, 1)},
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the fluctuations from the game R = {(1, 0), (5, 3), (1, 1), (3, 5), (0, 1)} survive the in-
troduction of the new rule, r′ = (8, 5). On the other hand, there are many symmetric
rulesets where “P-line” appears to be the correct notion; see Section 6.1.

2. The number of P-lines which appear in the figures (for games in the strict class) as
well as their slopes and densities, depends nontrivially on the particular ruleset under
consideration. For games such as Nim, Wythoff’s Nim, (1, 2)-GDWN and some more
GDWN games [Larsson 2012], the number of P-lines present equals the number-of-
rules-minus-one: there are n P-lines and there are n+ 1 rules in the ruleset. Suppose
that R is in the strict class, and let ∆(R) = #R − #(P-lines associated with R).
A comparison of Figures 2e and f illustrates that the addition of a new rule to a
ruleset does not always create a new P-line. For (p, q)-GDWN games it is conjectured
[Larsson 2012] that the geometric behavior is as for Wythoff’s game, unless (p, q) is of
a very special form, as will be defined in Section 5.1: we get ∆ = 1 in the latter case,
but ∆ = 3 in the former case. As we will see, the estimates of slopes and densities of
P-lines in the strict class requires ∆ = 1. If this is not the case, then we provide an
algorithm to reduce the number of rules, described as a novel reorganization model in
Section 4.

3 Analysis of Linear Nimhoff

The intention of this section is to characterize the overall geometric structure of the P-
positions in the strict class of Linear Nimhoff. Towards this end, we will forego determining
the precise locations of P-positions in favour of a more global geometrical description that
quantifies the number, slopes, and densities of the P-lines. The motivation behind this
approach is as follows: recent work [Zeilberger 2001, Zeilberger 2004, Friedman et al. 2007,
Friedman et al. 2009] suggests that some combinatorial games—including some that are pre-
sumed to be computationally “hard”—may display certain regularities which are manifest
in the underlying geometric structure of the game’s P-positions.

In particular, such games may simultaneously display both order (in the sense of a reg-
ular underlying geometry) and disorder (in the form of scatter about this regular struc-
ture). While the disordered component (i.e., scatter) is believed to be associated with a
game’s complexity and may resist analytical treatment, the ordered component may be
tractable to analysis and yield critical new insights into the game [Friedman et al. 2007,
Friedman et al. 2009]. For this reason, in this section, the overall goal is to calculate the
number, slopes, and densities of the P-lines in the strict class of Linear Nimhoff, where
scatter along lines is the most prominent feature.

A position X in Linear Nimhoff is called a parent of position Y , if a player can move
from X to Y in one turn, and Y a child of X—in standard terminology the children are the
“options”. Given a rule r ∈ R, we define X to be a parent under r of Y , and Y to be a child
under r of X, if one can move from X to Y using r. The slope s(r) of a rule r = (a, b) in
Linear Nimhoff is denoted by s(r) = b/a.
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3.1 Forbidden regions

In this section, we build a rigorous model for the analysis of Linear Nimhoff. We locally
extend the ruleset R, to allow for any non-empty set of rules, so that for example R can be
void of nim-type rules, or it may contain instead of (0, 1) a rule such as (0, k), any k > 0. The
reason for this relaxation of R is that the scatter-along-lines type of geometry also appear
frequently in this bigger class.

For α, β ∈ < ∪ {∞}, with 0 6 α < β, then Fα,β = {(x, y) | α 6 y/x 6 β} ⊂ <2 is a
forbidden region if F ∩P is finite, and the region is sharp if, for any ε > 0, there are infinitely
many P-positions (x, y) with ratios y/x in each of the intervals (α− ε, β) and (α, β + ε), or
α = 0, β =∞ respectively.

Let B ⊂ P (R). Sometimes this set is a P-beam, or perhaps even a P-line. Let α =
lim inf y/x 6 lim sup y/x = β, for (x, y) ∈ B. Then B is a P-line if α = β. In general, if
α 6 β, then B is a P-beam if it contains no forbidden region. Thus we generalize notation
and let ∆(R) = #R−#P-beams.

Hypothesis 1. For each forbidden region F , there exists a single rule r ∈ R by which it is
possible to move from almost all positions in F to a P-position; in other words, almost all
N-positions within a given forbidden region are parents of P-positions under the same rule r.

For example in the game of Nim, there are precisely two sharp forbidden regions, F0,1 and
F1,∞ respectively. Note that, given Hypothesis 1, the positions in a forbidden region may
have moves to P-positions via other rules as well. This is exemplified in the middle forbidden
region of Wythoff Nim Fφ−1,φ, where each position of the form (x, bn), |bn−x| < n or (bn, y),
|bn − y| < n has not only a diagonal move, but also a Nim-type move to a P-position. 2

Consider r ∈ R. We write F ′ = F ′(r) to denote almost all positions in a forbidden region
F , satisfying Hypothesis 1; if ∀x ∈ F ′ ∃y ∈ P : y + kr = x, for some positive integer k, we
say that the rule r fills the forbidden region F (with N-positions).

Lemma 1. Consider a ruleset R and suppose that r fills the forbidden region Fα,β(r). If F
is sharp and Hypothesis 1 holds, then α < s(r) < β.

Proof. Suppose that s(r) = β + δ, for some δ > 0. By Hypothesis 1, ∃y ∈ P : y + kr = x,
∀x ∈ F ∩N . Then, ∀(u, v) : β < v/u < β + δ, ∃k′ ∈ Z>0, x ∈ F ∩N : x+ k′r = (u, v), which
gives y + (k + k′)r = (u, v), and so there is a move from (u, v) to the P-position y. But, if
Fα,β(r) is sharp, there are infinitely many P-positions of the form (u, v), so δ 6 0. The lower
bound is analogous.

See also Figure 8 (the picture to the left) in Section 5. From Lemma 1 it follows that no
two sharp forbidden regions can be filled by the same game rule.

2The ideas presented here are even more general. We may, for example, exclude one or both Nim-type
moves; in the game R = {(1, 1)}, the set of P-positions is {(0, x), (x, 0) | x > 0}. There are more simple
examples of R, for which we can justify the value of the definition of forbidden regions. Take for example
the ruleset R = {(x, 2x), (2x, x)}. The reader may check that the P-positions are precisely the positions of
the forms (0, x), (x, 0) or (2x, 2x), so that we have two sharp forbidden regions, again F0,1 and F1,∞, but for
a different reason than that of Nim. Note that, in each example mentioned in this paragraph, the various
sets F ∩ P are empty.
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Observation 1. Let F (r) and G(r′) be two distinct sharp forbidden regions with fill rules r
and r′ respectively. Then r 6= r′.

Lemma 2. Given Hypothesis 1, then ∆(R) > 1.3

Proof. By Observation 1, there can be at most one sharp forbidden region per rule. Recall
∆(R) = #R −#(P-beams associated with R). Each sharp forbidden region is bounded by
a P-beam on each side, except for the case of nim-type moves in R, in which case there is
only one P-beam on one of the sides.

3.2 Equivalence classes

In Wythoff’s game, the observation that there is a P-position in every row, column, and
diagonal proves crucial to its analysis. A similar situation exists in Linear Nimhoff except
we require more general terms than rows, columns, and diagonals. For this purpose, we will
use equivalence classes to define sets with similar properties.

Consider some rule r. We define an equivalence relation ∼r as follows: for positions X
and Y , X ∼r Y if either Y is a child under r of X, Y is a parent under r of X, or Y equals
X. The equivalence classes under ∼r are sets of colinear points lying along lines with the
same slope as r. Let Cr be the set of all equivalence classes under ∼r. For example, C(1,0)

is the set of all rows in the game’s two-dimensional position space, C(0,1) is the set of all
columns, and C(1,1) is the set of all diagonals with slope 1.

In Wythoff’s game, the statement that there is exactly one P-position in every diagonal
is equivalent to the statement that every set in C(1,1) contains exactly one P-position. We
generalize this idea, which suffices to prove a strengthening of Lemma 1.

Theorem 1. Let r ∈ R and suppose F = Fα,β is a forbidden region such that α < s(r) < β.
Given Hypothesis 1, the rule r fills F ′ if and only if almost all sets in Cr contain exactly one
P-position.

Proof. Suppose that the rule r fills F ′. Then each position X ∈ F ′∩N has a P-position as a
child under r. Since r ∈ R, by definition of a P-position, no equivalence class in Cr contains
more than one P-position. Since F ∩ P is finite, the forward implication follows.

Conversely, assume there exists exactly one P-position in almost all sets in Cr. Then
almost all positions are equivalent under ∼r to a P-position. All but finitely many positions
in F are N-positions. Let f be an arbitrary N-position in F . By Lemma 1, all of its parents
under r are also in F , so all of them are also N-positions. Thus, except for finitely many
positions in F , f has a child under r which is a P-position. This is true for all f in F ′, so
the rule r fills F ′.

As a consequence of Lemma 1 we noted that no single game rule r can fill two distinct
forbidden regions. We strengthen this in the following assumption:

Hypothesis 2. Let R be a ruleset for which |R| = n + 1. Then there are n P-beams and
n+ 1 forbidden regions associated with R. That is, ∆(R) = 1.

3If R does not contain both nim-type move vectors, then ∆(R) > 0 and ∆(R) > −1 respectively one or
zero nim-type moves.
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3.3 The slopes and densities of P-lines in the strict class

For the strict class of Linear Nimhoff, we impose the following restriction to the family of
rulesets:

Hypothesis 3. Let B ⊂ P (R). If B is a P-beam, then B is a P-line.

The key to understanding the properties of the P-lines in the strict class of Linear Nimhoff
lies within an analysis of the forbidden regions. Associated with each forbidden region are
various constraints, which collectively can be solved to yield quantitative predictions for
the slopes and densities of the game’s P-lines. Here we describe how these constraints are
constructed. Consider a game of Linear Nimhoff with ruleset R whose P-positions lie within
n P-lines. Label these n P-lines l1, l2, . . . , ln in order of increasing slope, where

mi = lim
(x,y)∈li

y

x

denotes the slope of line li. Thus, designating the set of all n P-lines as L = {l1, l2, · · · , ln},
we have ∀ li, lj ∈ L, i < j ⇒ mi < mj. These n P-lines divide the plane into n + 1
forbidden regions, which are filled under n + 1 distinct rules. Let R = {r1 = (1, 0), r2 =
(a2, b2), · · · , rn+1 = (an+1, bn+1), rn+1 = (0, 1)} be a set of n+1 fill rules, labeled by increasing
slope, i.e. ∀ ri, rj ∈ R, i < j ⇒ s(ri) < s(rj). Recall that R always contains rules r1 = (1, 0)
and rn+1 = (0, 1), since these two rules are responsible for filling the forbidden regions
bordering the x and y axes, respectively.

Hypothesis 4. For any P-line, `i = {(xn, yn)}, the projected density along the x-axis,
λi = lim n

xn
exists ((xn) increasing).

Denote by c+r and c−r those classes in Cr, for which membership of (0, y) implies y > 0
and y < 0 respectively (y rational).

Lemma 3. If ` is a P-line with slope greater than s(r), then c−r ∩ ` = ∅. If ` is a P-line with
slope smaller than s(r), then c+r ∩ ` = ∅.

Proof. The proof is a geometric argument displayed in Figure 4.

Therefore, P-lines with slopes greater than s(r) only contribute P-positions to sets in Cr
that lie along lines with positive y-intercepts, while P-lines with slopes less than s(r) only
contribute P-positions to sets in Cr that lie along lines with positive x-intercepts.

As we describe next, by dividing up Cr into two parts in this manner, each rule in
R (save for rules (1, 0) and (0, 1)) will give rise to two geometric constraints in the form
of algebraic equations. Solving these equations yields analytical values for the slopes and
densities of the P-lines. Numerical simulations of Linear Nimhoff under different rulesets
show full agreement with these predicted values (to within numerical uncertainty). We
prove the following theorem.

10
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Figure 4: In this depiction, dashed lines represent the equivalence classes comprising Cr; the
heavy solid lines are P-lines; the thin solid line is the line of slope s(r) passing through the
origin.

Theorem 2. Suppose that a ruleset R, with n+ 1 rules, satisfies Hypotheses 1-4. Then the
following system of equations holds

i−1∑
j=1

λj
bi −mjai

= 1 ∀ i ∈ {2, 3, . . . , n+ 1}, (1)

n∑
j=i

λj
mjai − bi

= 1 ∀ i ∈ {1, 2, . . . , n}. (2)

Proof. To find the first half of the constraints, let ri = (ai, bi) be an arbitrary element in
R other than r1 = (1, 0). Combining all the P-positions within P-lines with slope less than
s(ri), by Theorem 1, we get exactly one P-position in (almost) every set in Cri that lies along
a line with positive x-intercept.

The P-line lj with slope mj < s(ri) and density (per unit x) λj will on average contribute
P-positions to a fraction

λj
bi −mjai

of the sets in Cri that lie along lines with positive x-intercepts. Namely, the heavy solid
line in Figure 5 represents a P-line with slope mj and density (per unit x) λj; the dashed
lines represent the equivalence classes associated with rule ri = (ai, bi), with slope s(ri) =
bi/ai. Two of these equivalence classes (depicted as thin solid lines in the figure) have
been distinguished, and the area between them shaded. Observe that the section of the
P-line intersecting the shaded region has horizontal extent s(ri)d/(s(ri) − mj), and hence
the expected number of P-positions along this segment of the P-line is λjs(ri)d/(s(ri)−mj).
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Figure 5: Fractional contribution of P-positions by a P-line.

Note also that the total number of equivalence classes which intersect this segment of the
P-line is dbi, since the horizontal spacing between adjacent equivalence classes is 1/bi. Thus,
the P-line contributes P-positions to a fraction λjs(ri)/bi/(s(ri)−mj) of equivalence classes.
Substituting s(ri) = bi/ai yields the desired ratio λj/(bi −mjai).

Because there is exactly one P-position in almost every set in Cri , the sum of these
fractions over all P-lines with slope less than s(ri) must equal 1. As a result of their ordered
labeling, the P-lines with slope less than s(ri) are exactly l1 through li−1. This yields the
equation

i−1∑
j=1

λj
bi −mjai

= 1.

This equality holds for all ri in R except for r1 = (1, 0). The rule (1, 0) is excluded because
there are no P-lines with slopes less than s(1, 0), and there are no sets in C(1,0) that lie along
lines with positive x-intercepts.

Similarly, to find the second half of the constraints, let ri = (ai, bi) be some arbitrary
element in R′ other than rn+1 = (0, 1). Combining all the P-lines with slope greater than
s(ri), we get exactly one P-position in almost every set in Cri that lies along a line with
positive y-intercept. Geometry shows that the P-line lj with slope mj > s(ri) and density
(per unit x) λj will contribute P-positions to a fraction

λj
mjai − bi

of the sets in Cri that lie along lines with positive y-intercepts. Because there is exactly one
P-position in every set in Cri , the sum of these fractions over all P-lines with slope greater
than s(ri) must equal 1. As a result of their ordered labeling, the P-lines with slope greater
than s(ri) are exactly li through ln. This yields the equation

n∑
j=i

λj
mjai − bi

= 1.
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This equality holds for all ri in R except for rn+1 = (0, 1). The rule (0, 1) is excluded because
there are no P-lines with slopes greater than s(0, 1), and there are no sets in C(0,1) that lie
along lines with positive y-intercepts.

4 Finding P-lines when ∆ > 1: a reorganization model

We wish to refine the renormalization approach in the previous sections, and to this purpose
we introduce a more dynamic reorganization model, which allows us to temporarily relax
Hypothesis 2. It describes a reorganization of P-positions within given P-lines if and only
if we ‘adjoin’ a non-fill rule (defined in the next paragraph) to a given ruleset. This model
is consistent with computer simulations, as well as with results and conjectures in previous
work [Larsson 2012] (the previous results concern a sometimes trivial reorganization where
locations of P-positions stay fixed).

In the preceding section, it was shown how to compute the slopes and densities of the
P-lines in the strict class of Linear Nimhoff assuming the game’s fill rules are known, that is
whenever ∆ = 1, and in this case we make an assumption by saying fill(R) = R. Since this
work does not concern the precise location of P-positions, but rather the precise asymptotics
of density and slopes of lines, we ignore local influence of any subset of rules, as long as
the overall geometry is preserved, and so in the computation of densities and slopes, the
rules that are not fill rules must be ignored (to assure ∆ = 1). Here we suggest a recursive
algorithm for determining which rules in a ruleset R are fill rules.

The simplest case, say R0, has two rules, namely (1, 0) and (0, 1). Here, the game is Nim,
and the P-positions lie along a single P-line of slope and density both equal to 1. Hence in this
case, fill(R0) = R0. Now, consider R0 ∪ {(2, 1)}. It is easy to prove (by induction) that the
P-positions are the same as Nim, so the adjoined rule (2, 1) is redundant to the geometry of
the game; it is clearly not a fill rule, because fill(R0∪{(2, 1)}) = R0. If we on the other hand
adjoin the diagonal Wythoff type move, we know that fill(R0∪{(1, 1)}) = R0∪{(1, 1)}. Next
consider the game R = R0∪{(2, 1), (1, 1)}. Here we have again ∆ = 1 (see Section 5.1), so no
rule is redundant to the geometry of the game. If we want to compute the number of P-lines in
R recursively, the order of adjoining moves is clearly important; we must begin by adjoining
the rule (1, 1) to R0. If we start with (2, 1), the procedure would instead point towards
Wythoff’s game, which is wrong. Yet, another example is the game R = R0∪{(2, 2), (1, 1)}.
This game is clearly Wythoff Nim, but if we were to at first adjoin (2, 2) to the rules of
Nim, then this move should be included, since it splits Nim’s P-positions. However the game
R0 ∪ {(2, 2)} is not Wythoff Nim, and ∆(R) = 2, and the rule (2, 2) is irrelevant (since it is
included in (1, 1)). We therefore suggest the rule (a, b) be tested for inclusion before the rule
(a′, b′) if a+ b 6 a′+ b′ (in case of multiples we may instead assume they have been removed
before starting the algorithm). We next describe the iteration step.

Let r = (a, b) be an element of R other than (1, 0) and (0, 1), and let R \ {r} be a set
containing n − 1 rules (ai, bi) for which a + b > c + d for all (c, d) ∈ R. Assume we know
the slopes and densities of the P-lines for the game with ruleset R \ {r}. Let L be the set
of P-lines for the game R \ {r}, labeled l1 to ln in order of increasing slope, and let i be the
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number of P-lines with slope less than s(r). Consider the following two inequalities:

i∑
j=1

λj
b−mja

≤ 1, (3)

n∑
j=i+1

λj
mja− b

≤ 1. (4)

The first (second) inequality holds if there is, on average, at most one P-position per set in
Cr lying along a line with positive x-intercept (y-intercept). If one of the P-lines has slope
equal to s(r), the second inequality will contain a division by zero, and should be treated as
not holding.

If both inequalities are satisfied, in the strict case, when r is adjoined to the ruleset
R \ {r}, the P-positions can reposition themselves within the same P-lines such that each
set in Cr contains at most one P-position. Therefore, in this model, the slopes and densities
of the P-lines for the game with ruleset R will be the same as those for the game with
the simpler ruleset R \ {r} (which, by this recursive argument, was presumed to have been
previously studied).

In contrast, if one or both of the inequalities is not satisfied, then if r is added to the
ruleset, the overall geometry of the P-lines must change in order for there to be at most one
P-position in each set in Cr.

By this reorganization model, the elements of R can therefore be assumed in bijective
correspondence to the forbidden regions, which allows us to calculate the slopes and densities
of the P-lines using Theorem 2.

4.1 The general class R = {(1, 0), r, (0, 1)}
As an illustration, we now use the above methods to solve the general class of Wythoff-like
games with rulesets of the form R = {(1, 0), (a, b), (0, 1)}. The first step is to determine
which rules have an effect on the geometry. Here, we need only concern ourselves with rule
r = (a, b), since (1, 0) and (0, 1) are always fill rules. To test whether r affects the geometry,
we must consider the simpler game with ruleset R \ {r}. For this game, the ruleset is
{(1, 0), (0, 1)}, which is equivalent to Nim and is known to have a single P-line with slope
and density (per unit x) both equal to 1. Next, we must count the number, q, of P-lines
with slope less than s(r). If a < b, then s(r) = b

a
> 1, which implies that the one P-line has

slope less than s(r) and thus q = 1. Otherwise, s(r) = b
a
≤ 1, which implies that the one

P-line has slope greater than or equal to s(r) and q = 0. In the first case where a < b, the
two inequalities from Section 4 are

1∑
j=1

λj
b−mja

=
1

b− a
6 1, (5)

and

1∑
j=2

λj
mja− b

= 0 6 1. (6)
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Because a < b and both a and b are integers, b − a ≥ 1, which implies that 1
b−a ≤ 1 and

hence both inequalities are satisfied. Therefore, r = (a, b) will have no effect on the overall
geometry, and the game with ruleset R = {(1, 0), (a, b), (0, 1)} with a < b will still have a
single P-line with slope and density (per unit x) both equal to 1, just as in two-pile Nim.
Similarly, if b < a, then q = 0 and the two inequalities are

0∑
j=1

λj
b−mja

= 0 ≤ 1, (7)

and

1∑
j=1

λj
mja− b

=
1

a− b
≤ 1. (8)

Since b < a and both a and b are integers, a− b ≥ 1, which implies that 1
a−b ≤ 1, and thus

both inequalities are satisfied. Therefore, we conclude that r = (a, b) will have no effect on
the overall geometry, and the game with ruleset R = {(0, 1), (a, b), (1, 0)} with b < a will
still have a single P-line with slope and density (per unit x) both equal to 1.

All that remains is the case in which a = b. In this case, s(r) = 1, which is the same
as the slope of the single P-line in the game with ruleset {(0, 1), (1, 0)}. As a result, the
second inequality contains a division by zero and is treated as not holding. Therefore, the
rule (a, a) will have an effect on the overall geometry of the P-lines and is in R′. This means
that R′ = {(0, 1), (a, a), (1, 0)}. Applying the methods of Section 3.3 (see equations (19),
(2)), we find that this game will have two P-lines satisfying:

λ1
a−m1a

= 1, λ1 + λ2 = 1,
λ2

m2a− a
= 1,

λ1
m1

+
λ2
m2

= 1.

Solving this system of four equations yields predictions for the slopes and densities of the
P-lines:

m1 =
−1 +

√
1 + 4a2

2a
, m2 =

1 +
√

1 + 4a2

2a

λ1 =
1 + 2a−

√
1 + 4a2

2
, λ2 =

1− 2a+
√

1 + 4a2

2
.

For the special case of Wythoff’s Game where r = (1, 1), these predictions yield the standard
result. The prediction for the case r = (a, a) for other values of a is consistent with the work
of [Connell 1959].

5 The class (p, q)-GDWN

Through several experiments, the QLPF class has been observed in Linear Nimhoff; early
fluctuations appear to stabilize to a quasi-log-periodic behavior within each P-beam. So
far, almost every such observation is contained in a proper subclass of Generalized Diago-
nal Wythoff Nim (GDWN) [Larsson 2012, Larsson 2014]. The class GDWN simplifies the
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equations, because the rules are symmetric (p, q) ∈ R if and only if (q, p) ∈ R, and so the
P-positions are also symmetric, (x, y) is a P-position if and only if (y, x) is also. The games
with only one additional symmetric rule,

R = {(1, 0), (q, p), (1, 1), (p, q), (0, 1)},

where p < q are positive integers, have attained most attention so far, and this general class is
also dubbed (p, q)-GDWN. This is where we mostly observed QLPF games; more specifically
they appear when (p, q) 6∈ {(1, 2), (2, 3)} is either a Wythoff pair or a dual Wythoff pair.
The first few such pairs are displayed in Tables 1 and 2, respectively. The Wythoff pairs

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

An 1 3 4 6 8 9 11 12 14 16 17 19 21 22
Bn 2 5 7 10 13 15 18 20 23 26 28 31 34 36

Table 1: The first few Wythoff pairs (An, Bn).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

An + 1 2 4 5 7 9 10 12 13 15 17 18 20 22 23
Bn + 1 3 6 8 11 14 16 19 21 24 27 29 32 35 37

Table 2: The first few dual Wythoff pairs (An + 1, Bn + 1).

are of the form (An, Bn) = (bφnc, bφ2nc) whereas the dual Wythoff pairs are of the form
(An + 1, Bn + 1) = (bφn+ 1c, bφ2n+ 1c), for some n > 0. Here, we collect these pairs as the
WdW-pairs, and we denote the set Ω = {(p, q) | (p, q) is a WdW-pair}. Note that, viewed
as an increasing sequence of pairs of integers, Ω is the total order

Ω = {(1, 2), (2, 3), (3, 5), (4, 6), (4, 7), (5, 8), (6, 10), (7, 11), . . .},

with alternating entries from the two sequences.
The first case where ‘P-lines’ gets distorted, creating fluctuated P-beams, is the game

(3, 5)-GDWN; (3, 5) is the third WdW-pair, and it appears that fluctuations are not possible
for the pairs (1, 2) and (2, 3), because the outer P-beams are too stable—they are generated
greedily [Larsson 2012, Larsson 2014]. The QLPF behavior is discussed in Figures 6, 7, 8
and 9 for the game of (3, 5)-GDWN. Previous work focused on “the split”, the existence of
a forbidden region between the beams (rather than the mean slopes of the P-beams) and
obtained two decimal conjectures for the bounds of the forbidden region, namely ≈ 1.74
and ≈ 1.57, as can also be extrapolated from Figure 3. Our new computations give rather
the mean of the slopes (of course we obtain a much higher precision in the new estimates),
and they confirm the previous observations: ≈ 1.760145300 and ≈ 1.537962520; see also
Figure 9.

In general for (p, q)-GDWN, it is convenient to note that m1 = 1/m4, m2 = 1/m3,
m1 = λ1/λ4 and m2 = λ2/λ3. Thus, to compute the conjectured mean slopes of P-beams, it
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suffices to solve the system of densities

1 = λ1 + λ2 + λ3 + λ4; (9)

λ1 = p− qλ1/λ4;
1 = λ1λ4/(λ4 − λ1) + λ2λ3/(λ3 − λ2); (10)

1 = λ2λ3/(qλ2 − pλ3) + λ2λ3/(qλ3 − pλ2) + λ1λ4/(qλ4 − pλ1).

A reasonable conjecture is that, if a quasi log-periodic behavior has not started to appear
within a few thousand multiples of the move rule, then the P-beam will be a P-line with
bounded, perhaps o(log(x)), scatter; see figures in [Larsson 2012] for the games (1,2)-GDWN
and (2,3)-GDWN45.

For several cases, the distribution along the x-axis appears to be non-uniform, when
computations are extended beyond a few hundreds; see below figures concerning the game
(3, 5)-GDWN, which is the ‘first’ game observed—the only (p, q)-GDWN games in the strict
class, with (p, q) ∈ Ω, appear for (p, q) = (1, 2) and (p, q) = (2, 3), where P-positions dis-
tribute uniformly along the P-lines. Nevertheless, by adapting the mean values to the slopes
and densities, again the experimental data agree with the values computed in [Larsson 2012],
up to three-digit precision.

The properties of forbidden regions and fill rules appear to still govern the overall behav-
ior, but the assumption of a uniform distribution along the x-axis does not hold any longer.
A reasonable guess is that there is uniform behavior from the point of view of each filling
rule r (rather than along the x-axis), which then stabilizes the patterns to a sufficient degree
(but we do not develop this idea further here).

The slopes of the upper P-lines of (1,2)-GDWN satisfy the pair of 4th degree equations

(z − 1)

(
1

2z − 1
− 1

z − 2

)
=
w2 − 1

2w − 1

z2 − 1

z
= (w − 1)

−w2 + 2w + 2

w
,

which show that the hypothesis of this work is consistent with previous work, and more-
over they provide a huge improvement in numerical precision of the previously conjec-
tured upper slopes; previously four digits, and now w ≈ 2.24772558355773557 and z ≈
1.47779977527220012 respectively (and the densities of the four P-lines, in order of increas-
ing slope, are ≈ 0.11021167, 0.25912616, 0.382936586 and 0.24772558).

4By rigorous methods a split of P-beams is demonstrated for the two cases (p, q) = (1, 2) and (2, 3)
[Larsson 2014], but the method did not suffice to obtain any precision to the extent of that split. This work
is the first significant progress on that subject.

5For Maharaja Nim [Larsson et al. 2013], the type of scatter has a structure which is possible to express
via a Dictionary on algebraic words. The scatter in Linear Nimhoff appears more random, and indeed the
methods in Maharaja Nim depend on the big restriction of (1, 2)-GDWN where only Knight type moves are
adjoined to Wythoff Nim.
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Figure 6: Left: P-positions of (3,5)-GDWN for x 6 32600, y 6 32600. Right: P-positions
of (3,5)-GDWN for x 6 47800, y 6 47800; by an experimental ≈ 1.478 scaling one may
conjecture a geometric ‘log-invariance’ of P-positions.
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Figure 7: The game (3,5)-GDWN: the ratios y/x > 1 whenever (x, y) is a P-position, for
x 6 35000.

5.1 A linear Nimhoff relaxation of the Wythoff/dual Wythoff pair
conjecture

In this section, we show that the inequalities (3) and (4) from Section 4 are consistent with
an asymetric relaxation of the conjecture that (p, q)-GDWN splits if and only if (p, q) ∈ Ω
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Figure 8: The fill-rule properties of the rules (0, 1), (left) (1, 1) (middle) and (3, 5) (right)
respectively, visualized for the game (3, 5)-GDWN, parents of the P-positions under the
respective fill rule are displayed in black for x 6 10000, y 6 10000.

[Larsson 2012].

Theorem 3. Consider a pair of positive integers (p, q) and the ruleset R =Wythoff Nim.
Then the proposition (p, q) ∈ Ω if and only if fill(R ∪ (p, q)) = R ∪ (p, q) is consistent with
the reorganization model using the inequalities (3) and (4).

Proof. By adjoining the vector (p, q) to Wythoff Nim, we get two cases for the inequalities:

1∑
j=1

λj
q −mjp

≤ 1, (11)

2∑
j=2

λj
mjp− q

≤ 1. (12)

or

2∑
j=1

λj
q −mjp

≤ 1, (13)

2∑
j=3

λj
mjp− q

≤ 1. (14)

because m1 = φ−1 and m2 = φ. Also λ1 = φ−2 and λ2 = φ−1, and where the cases are
1 < q/p < φ and φ < q/p respectively.

Case 1: the inequalities are φ−2

q−φ−1p
6 1, by (11), and φ−1

φp−q 6 1, by (12). Hence

φ−1 6 φq − p (15)

and

φ−1 6 φp− q. (16)
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Figure 9: Initial fluctuations appear to stabilize to a quasi-log-periodic geometry in the game
(3, 5)-GDWN. The first picture consists of a few hundred pixels (on each axis), and the last
picture displays ∼ 20000 × 20000 pixels. The coloring scheme in the picture, is that white
pixels are P-positions, and the remaining colors are N-positions. Except for possibly the first
picture, only the patterns of N-positions are visible (unless zooming in). Black means here
that the pixel sees only one P-position (viewing along the rules of the game), yellow means
the pixels detects two P-positions, and for red it detects three (or more) P-positions.

if and only if there is no new split of P-lines when adjoining the move vector (p, q), with
1 < q/p < φ, to Wythoff Nim. The first inequality (15) is trivially true, so it suffices to
verify (16). The dual Wythoff pairs are of the form (p, q) = (2, 3), (4, 6), (5, 8), . . . and the
ratios are smaller than φ. In this case, the conjecture is that there is a split (an inequality
does not hold). But, for example (p, q) = (4, 5) is not a dual Wythoff pair, so it should not
split (inequalities hold). Obviously the first inequality holds since q > p. For the second
inequality we compute

φ−1 6 φbφn+ 1c − bφ2n+ 1c
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if and only if
φ 6 φbφn+ 1c − bφ2nc

0 6 φbφnc − bφnc − n

0 6 φ−1bφnc − n

φn 6 bφnc

which is false, because φ is irrational.
For the other direction, suppose that q/p < φ, but (p, q) is not a dual Wythoff pair.

Then, by complementarity, either

1 < p = bφn+ 1c,

with 2 < q < bφ2n+ 1c, or
1 < p = bφ2n+ 1c,

with 2 < q 6 bφ2n+ 1c+ bφnc.
In either case, we must prove that inequality (16) holds. In the first case, it suffices to

justify
φ−1 6 φbφn+ 1c − bφ2nc

−1 6 φbφnc − bφnc − n

n− 1 6 φbφnc − bφnc

n− 1 6 φ−1bφnc

φ(n− 1) 6 bφnc

In the second case, we justify

φ−1 6 φbφ2n+ 1c − bφ2n+ 1c − bφnc

φ−1 6 φ−1bφ2n+ 1c − bφnc

0 6 bφ2nc − φbφnc

0 6 n− φ−1bφnc

φn > bφnc.

Case 2: the inequalities are

φ−2

q − φ−1p
+

φ−1

q − φp
6 1, (17)

by (13), and 0 6 1, by (14). We wish to prove that (p, q) is a Wythoff pair if and only
if there is no new split of P-lines when adjoining the move vector (p, q), with φ < q/p, to
Wythoff Nim.

The inequality (17) is equivalent with
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1 6 q − p− qp

q − p
φ−3 (18)

By letting (p, q) = (φn, φ2n) be a Wythoff pair, we get

1 6 n− bφ
2ncbφnc
n

φ−3

which simplifies to

(n2 − n)φ3 > bφ2ncbφnc > (φn− 1)(φ2n− 1) = φ3n2 − φ2n− φn+ 1

This holds if and only if 0 > 1. Hence, the hypothesis of a new P-line is consistent with the
conjecture for (p, q)-GDWN in this case. Next, we must check that if (p, q) with q/p > φ, is
not a Wythoff pair, then inequality (18) holds. In case p = bφnc, then the problem reduces
to justifying the inequality

(m2 −m)φ3 > bφn+mcbφnc,

for any m > n. We get

(m2 −m)φ3 > (φn+m)φn

m2φ3 > φ2n2 + φmn+mφ3

m2φ2 +m2φ > φ2(m2 − (m+ n)(m− n)) + φ(m2 − (m− n)m) +mφ3

m(φ2 + φ) 6 φ2(m+ n)(m− n) + φ(m− n)m,

which holds because m > n. Hence, no new P-line is introduced if q/p > φ and (p, q) is not
a Wythoff pair.

The games in GDWN have symmetric rulesets, and so, to justify that conjectures in
previous work is consistent with the reorganization model, it suffices to prove that introducing
the move vector (q, p), to the Linear Nimhoff game R = {(1, 0), (1, 1), (p, q), (0, 1)}, (p, q) ∈
Q, introduces a fourth P-line (in the case (p, q) 6 (2, 3)) or otherwise P-beam. Because
computational experiments have shown that P-beams are not always P-lines, a general proof
could be a bit more demanding. Perhaps the model will even be refuted in some cases of
fluctuating P-beams, although experimental results point towards that the model holds also
in this interesting QLPF-case.

In the other cases, it is known [Larsson 2012] that if (p, q) 6∈ Q, then fill(R) = R \
{(p, q), (q, p)}. This means that the slopes and densities of any such game are identical to
Wythoff’s game. The individual locations of those P-positions can be completely different
from those of Wythoff Nim, if q/p > φ, as is illustrated [Larsson 2012] for (2,4)-GDWN and
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(7,12)-GDWN. If q/p < φ, then in fact the P-positions are identical [Larsson 2012] (which
holds also for Linear Nimhoff games of the form {(1, 0), (1, 1), (p, q), (0, 1)}). The ‘scatter
along a P-line’ can vary hugely; for example for (7, 12)-GDWN, around x-coordinate 40000,
only the first digit in the ratio y/x for an ‘upper’ P-position ≈ 1.6 has been experimentally
confirmed.

Using terminology in this study, Theorem 3 can be restated as follows.

Corollary 1. If R = {(1, 0), (1, 1), (p, q), (0, 1)} is in the strict class, then there are three
P-lines for the ruleset R if and only if (p, q) ∈ Q.

In this case, we believe that Linear Nimhoff is in the strict class, but in going from one
adjoined move of Wythoff Nim to two adjoined moves, we restate a conjecture [Larsson 2012].
Given the three P-lines from Corollary 1 we can justify numerically for the first few games
that our reorganization model corresponds to the conjectures, even though several of these
games are believed to be QLPF-games, with an even more interesting behavior.

Conjecture 1 ([Larsson 2012]). Consider R = {(1, 0), (q, p), (1, 1), (p, q), (0, 1)}. There are
four P-beams (P-lines in case of (p, q) = (1, 2) or (2, 3)) for the move set R if and only if
(p, q) ∈ Q. Otherwise there are two P-lines of slopes and densities as for Wythoff’s game.
In case of P-beams, this class of games belongs to the QLPF class of relaxed Linear Nimhoff.

By Corollary 1, we know that fill(R) = R = {(1, 0), (1, 1), (p, q), (0, 1)}, whenever (p, q) ∈
Q, and so there are three P-lines. Experimentally it seems that m1 ≈ φ−1 and λ1 ≈ φ−2 as for
Wythoff Nim. Thus it is a delicate matter to introduce the new rule (q, p). If the approximate
values are in fact equalities, then for the Wythoff pairs, we get one set of inequalities, and
for the dual Wythoff pairs, we get another set. We display first the equations for the three
conjectured P-lines for the game {(1, 0), (1, 1), (p, q), (0, 1)}. For the P-lines with positive x-
intercept we get exactly one P-position in every set in Cri that lies along a line with positive
x-intercept.

i−1∑
j=1

λj
bi −mjai

= 1 ∀ i ∈ {2, 3, 4}, (19)

For those with positive y-intercept:

n∑
j=i

λj
mjai − bi

= 1 ∀ i ∈ {1, 2, 3}.

Altogether,

λ1
1−m1

= 1

λ1
q −m1p

+
λ2

q −m2p
= 1

λ1 + λ2 + λ3 = 1
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and

λ1
m1

+
λ2
m2

+
λ3
m3

= 1

λ2
m2 − 1

+
λ3

m3 − 1
= 1

λ3
m3p− q

= 1

Computer explorations give that the slope m3 is greater (smaller) than p/q if (p, q) is a
Wythoff pair (dual Wythoff pair). (Note that the slope 0 < p/q < 1.)

Thus, in the case of a Wythoff pair, to justify that the new rule (q, p) is part of the
ruleset, it suffices to show that the second inequality does not hold, i.e. that:

λ1
m1p− q

+
λ2

m2p− q
+

λ3
m3p− q

> 1. (20)

(Since there is no P-line below the rule (p, q), the first inequality is trivially satisfied.)
In case of a dual Wythoff pair, to justify that the new rule (q, p) is part of the ruleset, since

there is exactly one P-line below the rule (p, q), we must show that one of the inequalities
does not hold, that is that:

λ1
q −m1p

> 1, or (21)

λ2
m2p− q

+
λ3

m3p− q
> 1. (22)

We have verified the inequalities (20), (21) and (22) numerically, for a few initial (p, q)
pairs, but we omit further details. Instead we propose the following problem.

Problem 1. Prove the analogue of Theorem 3 in this setting, in particular the occurence of
a new P-line for the cases (p, q) = (1, 2) and (2, 3), where it has been conjectured that the
games are in the strict class.

6 A scheme built on observed reflections in fluctuation

A subclass of the (p, q)-GDWN games exhibits quasi-log-periodic fluctuations, summarized
in Tables 5 and 6, where “?” means that it is uncertain whether a visual inspection indicates
an integer number of half-log-periods.

Let the numbers a−1 < 1 and a > 1 denote the mean slopes of the outer P-beams,
whereas b−1 < 1 and b > 1 are the mean slopes of the inner P-beams, respectively. If a is the
slope of the 1st line (the mean slope of the top P-beam), the log-period of bouncing from
the the 4th line along (0, 1) to the 1st line and back along (1, 0) is log a− log a−1 = 2 log a.
The log-period of bouncing from the 4th line to the 3rd line along (1, 1), then back to the
4th line along (1, 0) is log((a− 1)/(b− 1)).
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Analogously, we study

ξa(a, b) =
2 log a

log(a− 1)− log(b− 1)

ξb(a, b) =
2 log b

log(a− 1)− log(b− 1)

ξab(a, b) =
log b− log a−1

log(a− 1)− log(b− 1)

ξba(a, b) =
log a− log b−1

log(a− 1)− log(b− 1)

in Tables 5 and 6, looking for integers whenever possible; the entry (a−1, a) corresponds to
the visible number of log-periods for ξa, (b−1, b) to ξb, (a−1, b) to ξab, and (b−1, a) to ξba.

The type of bouncing is displayed in Figure 10, where the white dotted box corresponds
to the 2 log a bounce, and the red-black zig-zag pattern in the lower (7, 4)-forbidden sector
corresponds to the log((a − 1)/(b − 1)) bouncing. The blue box is analogous, but here the
relation of bouncing is measured between the first and third P-beam. In both these cases, we
visually detect 4 periods. Sometimes the visual inspection indicates that we should rather
count the number of ‘half’ log-periods, here ‘half’ means either a bounce with the inner
or outer P-beam. We leave it as an open problem to justify these integer of half integer
approximations in terms of the game rules.

(1,2) [2.247725584, 1.477799775, 1.687531557]
(3,5) [1.760145300, 1.537962520, 3.270827298]
(4,7) [1.768998972, 1.601914235, 4.656921040]
(6,10) [1.697534360, 1.589805226, 6.308758458]
(8,13) [1.662070300, 1.582782860, 7.966064987]
(9,15) [1.678278787, 1.607189817, 9.353017596]
(11,18) [1.656365788, 1.598892313, 11.01365251]
(12,20) [1.668937168, 1.615891660, 12.39876038]
(14,23) [1.653187304, 1.608112999, 14.06105137]

Table 3: Wythoff pairs (p, q), [slope a, slope b, ξa(a, b)] (initial 9 digits).

Note that the log-ratio for ξa(a, b) appears to approximate the lower sequence of the
Wythoff pairs. Tables 3 and 4 seem to indicate that each one of the four log ratios could
contribute to explain the ‘bouncing’ between P-beams, and how the fluctuations become
stable.

The log-ratio ξ(a, b) > 2 gives fluctuations. Is this a requirement for fluctuations to
become permanent?

Tables 3 and 4 display bounces between the P-beams, which indicates mostly integer
log-ratio, or otherwise half of integer log-ratio.

In Figure 11, we display a variation in the behavior of adjoining a new rule to the game
of (3, 5)-GDWN. In the left-most picture, the rule (4, 7) has been adjoined. The behavior

25



Figure 10: Visual interpretation of ξba(a, b) (blue) and ξab(a, b) (white dashed) for the game
(4, 7)-GDWN.

(2,3) [1.739269208, 1.408430574, 1.865590884]
(4,6) [1.638930839, 1.482391155, 3.515816330]
(5,8) [1.675293133, 1.547469192, 4.917904008]
(7,11) [1.640358498, 1.550853934, 6.574385950]
(9,14) [1.621326573, 1.552514257, 8.234019700]
(10,16) [1.640881924, 1.578215903, 9.625732990]

Table 4: Some Dual Wythoff pairs (p, q), [slope a, slope b, ξa(a, b)].

a−1 − a,3 or b,2.5 b,4 a, 6.5 a, 7? b, 8.5 a, 11 b,10
b−1 − a, 2.5 a, 4 a, 6≈ b, 6 ? b, 8 b, 10 a, 10

p 1 3 4 6 8 9 11 12
q 2 5 7 10 13 15 18 20

Table 5: Geometric behavior for the Wythoff pairs.

satisfies the reorganization model and a new P-line has occured. To the right, it appears
that the new rule, which is (5, 8), is not quite able to change the quasi-log periodic behavior
of (3, 5)-GDWN; neither is it clear whether a new P-line (or P-beam) appears (according to

26



a−1 − a,3 a,5 b,6.5 ? a,9 a,11 a,13
b−1 − b,2.5 b,4 b,6 b,6? b,8 b,10 b,12

p 2 4 5 7 9 10 12 13
q 3 6 8 11 14 16 19 21

Table 6: Geometric behavior for the dual Wythoff pairs.

Figure 11: Initial P-positions for two one-rule-extensions of (3, 5)-GDWN. To the left, the
adjoined rule is r = (4, 7), and to the right the adjoined rule is r = (5, 8).

the reorganization model, a new P-beam should appear).

6.1 Questions

Experimental data [Larsson 2010] give uniformly distributed P-positions along P-lines also
for the games

{(1, 2), (2, 3)}-GDWN = {(1, 0), (2, 1), (3, 2), (1, 1), (2, 3), (1, 2), (0, 1)},

{(1, 2), (2, 3), (3, 5)}-GDWN and {(1, 2), (2, 3), (3, 5), (5, 8)}-GDWN. For each of these games
a new Fibonacci type pair has been adjoined, and data shows that this gives birth to two
new symmetric P-lines.

For the game {(1, 2), (2, 3), (3, 5), (5, 8), (8, 13)}-GDWN, however, computations do not
seem to indicate a new split; only the same number of P-beams as for the game

{(1, 2), (2, 3), (3, 5), (5, 8)}-GDWN

can be distinguished (although the P-positions are clearly different). These types of questions
relate to the equations (3) and (4), and in this spirit one would also like to justify the
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hypothesis from an arXiv preprint version of [Larsson 2012], that the game {(x, y)|x, y 6 5}
has exactly 5 (uniform) upper P-lines, and similar problems.

7 Discussion

We remark here that the game of Linear Nimhoff is itself a special case of some other general
games that have been studied in the literature – “vector subtraction games” [Golomb 1966]
a.k.a. “invariant games” [Duchêne et al. 2010, Larsson et al. 2011, Larsson 2012], “vector
addition games” [Larsson et al. 2013], and the “n-vectors game” [Duchêne et al. 2009]. The
special restrictions on Linear Nimhoff give rise to unique features not apparent in these
more general games. Another related class of games is “Nimhoff” [Fraenkel et al. 1991];
they focus on games between Nim and Wythoff. Thus, this class differs from ours in that
they are not concerned with linear rules (our class is the most general on what we regard as
linear extensions of 2-pile Nim). Another difference is that the paper [Fraenkel et al. 1991]
concerns structures of Grundy-values of games (bridging the complexity class between Nim
and Wythoff’s game). In this paper we restrict attention to the patterns of P-positions
(corresponding to Grundy-value 0).

In this work we have characterized the overall geometric structure of the P-positions in
the game of Linear Nimhoff. More specifically, our analysis has produced highly accurate
quantitative predictions about the number, slopes, and densities of the P-lines observed in
the game, predictions which have been subsequently borne out of numerical simulations.
Unlike standard game-theoretic techniques commonly used to analyze combinatorial games,
the methodology employed here offers a probabilistic/geometric description, rather than an
exact, deterministic specification, of the locations of the P-positions. The virtue of this
approach is that it has broad explanatory powers and allows one to tackle more complex
games for which standard deterministic methods have failed. It is usually believed that such
methods need be non-rigrous, but here we build a rigorous model, and instead leave the
questions of existence for future study.

Generalized classes of games that include Linear Nimhoff have been defined previously in
the literature, but Linear Nimhoff itself has not been extensively analyzed, and its restricted
structure gives rise to certain features not readily apparent in these more general games.

Linear Nimhoff can also be seen as a specific form of the more general “n-vectors game”,
introduced in [Duchêne et al. 2009]. The n-vectors game is defined the same way as Linear
Nimhoff, with three distinctions: (i) the vectors in the n-vectors game can exist in any vector
space of the form <p, (ii) the coordinates of the vectors need not be integers, and (iii) a player
can only move to a position that can be expressed as a sum of non-negative multiples of
the vectors in the ruleset. Because in Linear Nimhoff (1, 0) and (0, 1) are always included in
the ruleset (by definition), it follows that every position in Linear Nimhoff can be trivially
expressed as a sum of non-negative integer multiples of these two rules, and hence the third
distinctive feature of the n-vectors game becomes irrelevant. So Linear Nimhoff with ruleset
R is equivalent to the n-vectors game played with the vectors in R which includes rules (1, 0)
and (0, 1). We note also that through appropriate changes in bases, it is possible to recast
some other n-vectors games into Linear Nimhoff form.

In other games, log-periodicity in P-position density first conjectured using heuristic
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analysis was later formally proven [Garrabrant et al. 2013].
Since Wythoff’s game provides a model for self organization according to Phyllotaxis

[Kappraff et al. 1998], one might want to consider the apparent self-organization in these
new games as forms of generalized Phyllotaxis, where the fill rule property plays an analo-
gous significant rule as for Wythoff’s game.

Acknowledgements: SG was supported in part by a W.M. Keck Foundation Summer Research
Fellowship; IPM was supported in part through an NSF Division of Undergraduate Education
STEP 1 grant. UL was supported in part by the Killam Trust.

References

[Bouton 1901] C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of
Mathematics 3 (1901-1902) 35-39.

[Berlekamp et al. 1982] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Win-
ning Ways for your Mathematical Plays, Academic Press, Inc., 1982.

[Connell 1959] Ian G. Connell, A generalization of Wythoff’s game, Canad. Math. Bull., 2
(1959) 181-190.

[Cook et al. 2015] M. Cook, U. Larsson, T. Neary, A cellular automaton for blocking queen
games, Cellular Automata and Discrete Complex Systems, 21st IFIP WG 1.5 Inter-
national Workshop, Automata 2015, Turku, Finland, June 8-10, Proceedings, J. Kari,
(ed.) LNCS 9099, (2015) 71–84
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